
polygon
Release 1.0.8

P S Solanki

Jul 11, 2022

CONTENTS:

1 Getting Started 3

2 Stocks 15

3 Options 25

4 Reference APIs 39

5 Forex 53

6 Crypto 61

7 Callback Streaming 69

8 Async Streaming 81

9 What the Hell are Enums Anyways 95

10 Getting Help 99

11 Bugs, Discussions, Wikis, FAQs 101

12 Contributing and License 103

13 Library Interface Documentation 105

14 Indices and tables 209

Python Module Index 211

Index 213

i

ii

polygon, Release 1.0.8

CONTENTS: 1

https://github.com/pssolanki111/polygon
https://www.patreon.com/pssolanki
https://discord.gg/jPkARduU6N

polygon, Release 1.0.8

2 CONTENTS:

CHAPTER

ONE

GETTING STARTED

Welcome to polygon. Read this page to quickly install and configure this library to write your first Polygon Python
application.

It is highly recommended to read this page for everyone since it contains everything you need to get started with
the library
You can see some examples on the github repository after you have done the initial steps. And maybe join our Discord
Server while you’re at it :D

1.1 What you need to have

1. A polygon.io account and your API key. Find your api key on Your Dashboard

2. Python version 3.6 or higher. Don’t have it installed? Install python

Once you have these, Proceed to the installation of the library. Skip if already done.

1.2 Installing polygon

The recommended method of installation for all users is to install using pip from PyPi. A virtual environment is highly
recommended but not a necessity.

run the below command in terminal (same for all OS)

pip install polygon

To confirm the install worked, try importing the package as such

import polygon

If this doesn’t throw any errors, the install worked. You may proceed to next steps now.

3

https://github.com/pssolanki111/polygon/tree/main/EXAMPLES
https://discord.gg/jPkARduU6N
https://discord.gg/jPkARduU6N
https://polygon.io/
https://polygon.io/dashboard/api-keys
https://www.python.org/downloads/

polygon, Release 1.0.8

1.2.1 Optional Libraries

You can also install the library with optional dependencies (you can skip them if you don’t need their functionalities)

pip install uvloop # this will install uvloop, see the uvloop section below to know how␣
→˓to use uvloop for faster performance on pure async programs

OR

pip install orjson # this will install orjson lib. Polygon lib would use orjson if␣
→˓available for streaming clients only. This enables fast json decoding of responses

OR to get both

pip install orjson, uvloop # Note that uvloop is only available on Unix platforms as of␣
→˓now

1.3 General guide for clients & functions

This section would provide general guidance on the clients without going into specific endpoints as stocks or options.

As you already know polygon.io has two major classes of APIs. The REST APIs and websockets streaming APIs.

This library implements all of them.

• For REST HTTP endpoints

– Regular client is implemented for all endpoints.

– Support for async client is also provided. See Async Support for REST endpoints for more.

• For websocket streaming endpoints

– a callback based stream client is implemented. See Callback Streaming

– an async based stream client is also implemented. See Async Streaming

Be sure to check out our special section What the Hell are Enums Anyways for info on enums which will be used in
many functions in this library to avoid passing error prone data.

Functions which are standalone (not attached to client objects) are all available at the top level as polygon.
function_name.

A detailed description of how to use the streaming endpoints is provided in the streamer docs linked above.
Need examples? The github repository has a few you could use.

also feel free to join in our Discord Server to ask a question or just chat with interesting people

4 Chapter 1. Getting Started

https://polygon.io/docs/getting-started
https://polygon.io/docs/websockets/getting-started
https://github.com/pssolanki111/polygon/tree/main/EXAMPLES
https://discord.gg/jPkARduU6N

polygon, Release 1.0.8

1.3.1 Creating and Using REST HTTP clients

This section aims to outline the general procedure to create and use the http clients in both regular and async program-
ming methods.

First up, you’d import the library. There are many ways to import names from a library and it is highly recommended
to complete fundamental python if you’re not aware of them.

import polygon

OR import the name you need
from polygon import StocksClient

OR import the names you need
from polygon import (StocksClient, ForexClient, StreamClient, build_option_symbol)

Now creating a client is as simple as (using stocks and forex clients as examples here)

1. Regular client: stocks_client = polygon.StocksClient('API_KEY')

2. Async client: forex_client = polygon.ForexClient('API_KEY', True)

Note that It is NOT recommended to hard code your API key or other credentials into your code unless you really have
a use case. Instead preferably do one of the following:

1. create a separate python file with credentials, import that file into main file and reference using variable names.

2. Use environment variables.

1.3.2 Request timeouts and limits configuration (optional)

section Only meant for advanced use cases. For most people, default timeouts would be enough.

You can also specify timeouts on requests. By default the timeout is set to 10 seconds for connection, read, write and
pool timeouts.

write timeout and pool timeout are only available for async rest client (which is httpx based). They’ll be ignored
if used with normal client

If you’re unsure of what this implies, you probably don’t need to change them.

Limits config
Only meant for async rest client (httpx based).

You also have the ability to change httpx connection pool settings when you work with async based rest
client. This allows you to better control the behavior of underlying httpx pool, especially in cases where
you need highly concurrent async applications. Using uvloop is also a good option in those case

You can change the below configs:

• max_connections: the max number of connections in the pool. Defaults to No Limit in the lib.

• max_keepalive: max number of keepalive connections in the pool. Defaults to 30.

Example uses:

client with a custom timeout. Default is 10 seconds
client = polygon.StocksClient('api_key', connect_timeout=15)

another one
(continues on next page)

1.3. General guide for clients & functions 5

https://github.com/MagicStack/uvloop

polygon, Release 1.0.8

(continued from previous page)

client = polygon.StocksClient('api_key', connect_timeout=5, read_timeout=5)

An async one now
client = polygon.StocksClient('key', True, read_timeout=5, connect_timeout=15)

another async one
client = polygon.StocksClient('key', True, connect_timeout=15, max_connections=200)

Now that you have a client, simply call its methods to get data from the API

current_price = stocks_client.get_current_price('AMD')
print(f'Current price for AMD is {current_price}')

Note that you can have instances of all 5 different types of http clients together. So you can create client for each
one of the stocks, options and other APIs

All the clients in the lib support context managers

with polygon.StocksClient('KEY') as client:
last_quote = client.get_last_quote('AMD)
print(f'Last quote for AMD: {last_quote}')

OR for async
async with polygon.StocksClient('key', True) as client:

last_quote = await client.get_last_quote('AMD')
print(last_quote)

Using context managers ensures that the connections opened up to make requests are closed properly.

You can manually close the connections if you’re not using context managers:

1. for regular non-async: client.close()

2. for async: await client.close()

This is not an absolute necessity but rather a good software practice to close out resources when you don’t need them.

1.4 Calling the methods/functions

Most methods and functions have sane default values which can be customized as needed. Required parameters need
to be supplied as positional arguments (which just means that the order of arguments matter when passing more than
one).

Some options, crypto and forex endpoints expect you to append prefixes O:, C:, X: respectively in front of tickers
(on options symbols, forex pairs and crypto pairs). the library handles this for you so you can pass in those with or
without the prefix.

Parameters which have special values are supplied as python enums. You can however always pass in your own
values but it is recommended to use enums as they mitigate the possibilities of an error.

All enums are available in the module polygon.enums and can be imported the way you like.

If you’re still unsure about enums, see our dedicated section: What the Hell are Enums Anyways

6 Chapter 1. Getting Started

polygon, Release 1.0.8

1.4.1 Passing dates, datetime values or timestamps

The library allows you to specify your datetime or date values as datetime.date, datetime.datetime objects or as
string YYYY-MM-DD. Some endpoints also accept millisecond/nanosecond timestamps (docs will mention this wherever
necessary)

• If an endpoint accepts a timestamp, you can either pass a timestamp or a datetime or date object. The lib will do
the conversions for you internally

• When you pass a timestamp, library will NOT do any conversions and pass it as is. So make sure you are passing
the correct timestamps.

• If you pass a datetime object, and the endpoint accepts a timestamp, the lib will convert internally to a times-
tamp. If there is no timezone info attached to the object, UTC will be used.

• If you come across situations where the returned data results are not complete or missing some values (for eg on
aggregate bars endpoint), just pass your values as datetime values (if possible as a timestamp or with timezone
information at least)

• The lib makes its best efforts parsing what the supplied datetime/timestamp/date could mean in context of the
relevant endpoint. The behavior is of course different between for example aggs and trades. If you want absolute
control, just pass as a unix timestamp or a datetime object having timezone information

Here are some best practices when passing datetime or dates or timestamps
• If you want complete control over what’s passed, pass a timestamp since epoch. The accuracy (i.e milli second

or nano second) depends on the endpoint itself (mentioned in the docs of course). Default timestamp accuracy
is ms

• Passing datetime objects is also a good way to pass absolute values and is recommended. Even better if the
object has timezone info. If no timezone info is provided, lib assumes UTC. It doesn’t make a difference in most
cases, but should be taken care of in fine tuning and accurate filtering scenarios

1.5 Return Values

Most methods would by default return a dictionary/list object containing the data from the API. If you need the under-
lying response object you need to pass in raw_response=True in the function call. It might be useful for checking
status_code or inspecting headers.

For 99% users, the default should be good enough.

The underlying response object returned is requests.models.Response for regular client and httpx.Response for
async client. Using .json() on the response object gets you the data dict/list

Once you have the response, you can utilize the data in any way that you like. You can push it to a database, create a
pandas dataframe, save it to a file or process it the way you like.

Every method’s documentation contains a direct link to the corresponding official documentation page where you can
see what the keys in the response mean.

1.5. Return Values 7

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.from_dict.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.from_dict.html

polygon, Release 1.0.8

1.6 Pagination Support

So quite a few endpoints implement pagination for large responses and hence the library implements a very simple and
convenient way to get all the pages and merge responses internally to give you a single response with all the results in
it.

The behavior is exactly the same for ALL endpoints which support pagination (docs will mention when an endpoint is
paginated). Knowing the functions and parameters once is enough for all endpoints.

To enable pagination
you simply need to pass all_pages=True to enable pagination for the concerned endpoint. You can also
pass max_pages=an integer to limit how many pages the lib will fetch internally. The default behavior
is to fetch all available pages.

You can pass verbose=True if you want to know what’s happening behind the scenes. It will print out status messages
about the pagination process.

You can further customize what kinda output you want to get. you have three possible options to make use of
pagination abilities in the library

1.6.1 Get a Single Merged Response (recommended)

Recommended for most users. Using this method will give you all the pages, merged into one single response inter-
nally for your convenience, and you will get all the results from all pages in one single list.

To use, simply pass all_pages=True. you can optionally provide max_pages number too to limit how many pages
to get.

for example, below examples will do the merging of responses internally for you

assuming client is created already

This will pull ALL available tickers from reference APIs and merge them into a single␣
→˓list
data = client.get_tickers(market='stocks', limit=1000, all_pages=True)

This will pull up to 4 available pages of tickers from reference APIs and merge them␣
→˓into a
single list
data = client.get_tickers(market='stocks', limit=1000, all_pages=True, max_pages=5)

1.6.2 Get a List of all pages

Only for people who know they need it. what this method does is provide you with a list of all pages, WITHOUT
merging them. so you’ll basically get a list of all pages like so [page1_data, page2_data, page3_data].

By default each page element is the corresponding page’s data itself. You can also customize it to get the underlying
response objects (meant for advanced use cases)

To enable, as usual you’d pass in all_pages=True. But this time you’ll ask the lib not to merge the pages using
merge_all_pages=False. That’s it. as described above, to get underlying response objects, pass an additional
raw_page_responses=True too.

See examples below

8 Chapter 1. Getting Started

polygon, Release 1.0.8

assuming client is created already

will fetch all available pages, won't merge them and return a list of responses
data = client.get_tickers(market='stocks', limit=1000, all_pages=True, merge_all_
→˓pages=False)

will fetch all available pages, won't merge them and return a list of response objects
data = client.get_tickers(market='stocks', limit=1000, all_pages=True, merge_all_
→˓pages=False,

raw_page_responses=True)

will fetch up to 5 available pages, won't merge them and return a list of responses
data = client.get_tickers(market='stocks', limit=1000, all_pages=True, merge_all_
→˓pages=False,

max_pages=5)

1.6.3 Paginate Manually

Only meant for people who really need more manual control over pagination, yet want to make use of available func-
tionality.

Every client has a few core methods which can be used to get next or previous pages by passing in the last response
you have.

Note that while using these methods, you’d need to use your own mechanism to combine pages or process them. If any
of these methods return False, it means no more pages are available.

Examples Use

assuming a client is created already
data = client.get_trades(<blah-blah>)

next_page_of_data = client.get_next_page(data) # getting NEXT page
previous_page_of_data = client.get_previous_page(data) # getting PREVIOUS page

ASYNC examples
await client.get_next_page(data)
await client.get_previous_page(data)

It's wise to check if the value returned is not False.

In practice, to get all pages (either next or previous), you’ll need a while loop An example:

all_responses = []

response = client.get_trades_vx(<blah-blah>) # using get_trades as example. you can use␣
→˓it on all methods which support pagination
all_responses.append(response) # using a list to store all the pages of response. You␣
→˓can use your own approach here.

while 1:
response = client.get_next_page(response) # change to get_previous_page for␣

→˓previous pages.
(continues on next page)

1.6. Pagination Support 9

polygon, Release 1.0.8

(continued from previous page)

if not response:
break

all_responses.append(response) # adding further responses to our list. you can use␣
→˓your own approach.

print(f'all pages received. total pages: {len(all_responses)}')

1.7 Better Aggregate Bars function

This is a new method added to the library, making it easy to get historical price candles (OCHLV) with ease. The lib
does most of the heavy lifting internally, and provides you with a single list which would have ALL the candles.

The functionality is available on both sync (normal) client and also on asyncio based client.

WHY though??
so the aggregate bars endpoints have a weird thing where they don’t have any pagination and the number of
maximum candles in one response to 50k only. Now usually this is fine if you only seek minute candles for a
month for example. But what if you need historical prices for last 10 years?

The library attempts to solve that challenge for you. Depending on whether you tell it to run in parallel or
sequentially (info on how to customize behavior is below), the function will grab ALL the responses in the
date range you specify, will drop duplicates, will drop candles which do not fall under the original time range
specified by you. merge the response, return a single list with all the data in there.

For most people, the default values should be enough, but for the ones who hate themselves (:P), it is possible to
customize the behavior however they like.

Note that the methods/functions are the same for all aggregate clients (stocks, options, forex and crypto). Knowing it
once is enough for all other clients

1.7.1 How the Hell do I use it then

• First things first, the argument to supply to enable the new aggs functionality is passing full_range=True to
your client.get_aggregate_bars() call.

for example: stocks_client.get_aggregate_bars('AMD', '2005-06-28', '2021-03-08',
full_range=True)

• The above example will split the larger timeframe into smaller ones, and request them in parallel using a Thread-
Pool (sync client) or a set of coroutines (async client)

• If you don’t want it to run in parallel (recommended to run parallel though), you can just specify
run_parallel=False. doing that will make the library request data one by one, using the last response re-
ceived as the new start point until end date is reached. This might be useful if you’re running a thread pool of
your own and don’t want the internal thread pool to mess with your own thread pool. on async client, always
prefer to run parallel

• The parallel versions (on both threaded and async clients) always split the larger range into smaller ones (45 days
for minute frequency, 60 days for hour frequency, close to 10 years for others). If you find yourself dealing with
a very highly volatile symbol (eg spy or some crypto symbols which are traded for a high timespan) and the 50k
limit is causing some data to be stripped off, you can add the additional argument high_volatility=True.
This will make the library further reduce its time chunk size

10 Chapter 1. Getting Started

polygon, Release 1.0.8

• By default it will also print some warnings if they occur. You can turn off those warnings using warnings=False.
Only do it if necessary though.

• When working with the parallel versions, you also have the ability to specify how many concurrent
threads/coroutines you wish to spawn using max_concurrent_workers=a new number ONLY change it if
you know you need it. This can sometimes help reduce loads or gain performance boost depending on whether
it’s increased or decreased. The default is your cpu core count * 5

• By default, the results returned will be in ascending order (oldest candles first in the final list). To change that
simply specify descending order . You can either pass the enum polygon.enums.SortOrder (recommended)
or pass a string sort='desc'.

1.7.2 I want to do it manually, but could use some help

Oh sure, You can also do that. the function which actually splits large timeframes to smaller ones, can be used to get a
list of smaller timeframes with their own start and end times.

Then you can iterate over the list and make requests yourself. Don’t do that unless you have to though. It’s always better
to use built in lib functions

anyways, the function you want to call is split_date_range(). You can call this method like so:

import polygon

client = polygon.StocksClient('KEY')

time_frames = client.split_date_range(start_date, end_date, timespan='minute')

This method also accepts a few more arguments described below:

Base.split_date_range(start, end, timespan: str, high_volatility: bool = False, reverse: bool = True)→ list
Internal helper function to split a BIGGER date range into smaller chunks to be able to easily fetch aggregate
bars data. The chunks duration is supposed to be different for time spans. For 1 minute bars, multiplier would
be 1, timespan would be ‘minute’

Parameters
• start – start of the time frame. accepts date, datetime objects or a string YYYY-MM-DD

• end – end of the time frame. accepts date, datetime objects or a string YYYY-MM-DD

• timespan – The frequency type. like day or minute. see polygon.enums.Timespan for
choices

• high_volatility – Specifies whether the symbol/security in question is highly volatile. If
set to True, the lib will use a smaller chunk of time to ensure we don’t miss any data due to
50k candle limit. Defaults to False.

• reverse – If True (the default), will reverse the order of chunks (chronologically)

Returns
a list of tuples. each tuple is in format (start, end) and represents one chunk of time frame

so basically

• By default the list returned will have newer timeframes first. To change that just pass reverse=False

• if the symbol you are dealing with is very volatile, so much that the 50k limit per response might be low, you can
pass high_volatility=True and lib will return timeframe in smaller chunks. (for eg, on minute aggs, 45 day
chunks are default, for high volatile symbols it will become 30 days)

1.7. Better Aggregate Bars function 11

polygon, Release 1.0.8

1.8 Async Support for REST endpoints

As you saw above in the example, the clients have methods for each endpoint. The usual client is a sync client. However
support for async is also provided for all the endpoints on all the clients.

Here is how to make use of it (This info is applicable to ALL rest clients)
First up, you’d create a client. Earlier you created a client by passing in just your API key. Here you’d create the client
with an additional argument.

so instead of something like: StocksClient('API_KEY'), you’d do

client = StocksClient('KEY', True) # or use_async=True for second parameter

This gives you an async client. Similar to sync, you can have all 5 different clients together. You can also pass in your
timeout values like you did above here too.

ALL the methods you’d use for async client have the same names as their sync counterpart names.
So if a method is named get_trades() in usual client, in async client you’d have it as get_trades() as well and
this behavior is true for all methods

Here is how you can use it grab the current price of a symbol

import polygon

async def main():
stocks_client = polygon.StocksClient('API_KEY', True)

current_price = await stocks_client.get_current_price('AMD')
print(current_price)

if __name__ == '__main__':
import asyncio
asyncio.run(main())

1.9 UVLOOP integration

(for async streamer and async rest client)

unix based Operating systems only, uvloop doesn’t have windows support yet

If your use case demands better performance on async streamer or async based applications using rest client than what
the usual asyncio has to offer, consider using uvloop, a libuv based event loop which provides faster execution.

Using it is very simple, install using pip install uvloop and then at the very top of your program, right below
your imports, add:

import uvloop

asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())

That’s it. asyncio will now use uvloop’s event loop policy instead of the default one.

12 Chapter 1. Getting Started

https://github.com/MagicStack/uvloop/issues/14
https://github.com/MagicStack/uvloop

polygon, Release 1.0.8

1.10 Special Points

• Any method/endpoint having vX in its name is deemed experimental by polygon and its name and underlying
URL path will be changed to a version number in the future. If you do use one of these, be aware of that name
change which is reflected in the docs. If you find the lib doesn’t have the changes reflected, let me know through
any means mentioned in the help page.

• You would notice some parameters having lt, lte, gt and gte in their names. Those parameters are supposed to
be filters for less than, less than or equal to, greater than, greater than or equal to respec-
tively. To know more see heading Query Filter Extensions in This blog post by polygon To explain: imagine a
parameter: fill_date_lt. now the date you’ll supply would be a filter for values less than the given value and
hence you’d get results which have fill_date less than your specified value, which in this case is a date.

• Some endpoints may not return a dictionary and instead return a list. The number of such endpoints is very
low. Similarly get current price returns a float/integer. I’m working towards reflecting the same in individual
method’s docs.

• It is highly recommended to use the polygon.io documentation website’s quick test functionality to play around
with the endpoints.

• Type hinting in function/method definitions indicate what data type does that parameter is supposed to be. If
you think the type hinting is incomplete/incorrect, let me know. For example you might ses: cost: int which
means this parameter cost is supposed to be an integer. adjusted: bool is another example for a boolean
(either True or False)

• You’ll notice some type hints having Union in them followed by two or more types inside a square bracket. That
simply means the parameter could be of any type from that list in bracket . For example: price: Union[str,
float, int] means the parameter price could be either a string, a float or an integer. You’d notice Union type
hints more on return types of the functions/methods.

so far so good? Start by taking a look at the complete docs for endpoints you need. Here is a quick list
• Stocks

• Options

• Forex and Crypto

• Callback Streaming and Async Streaming

• What the Hell are Enums Anyways

1.10. Special Points 13

https://polygon.io/blog/api-pagination-patterns/

polygon, Release 1.0.8

14 Chapter 1. Getting Started

CHAPTER

TWO

STOCKS

So you have completed the initial steps and are ready to dive deep into endpoints. Read this page to know everything
you need to know about using the various Stocks HTTP endpoints.

See Async Support for REST endpoints for asynchronous use cases.

Docs below assume you have already read getting started page and know how to create the client. If you do not know
how to create the client, first see General guide for clients & functions and create client as below. As always you can
have all 5 different clients together.

import polygon

stocks_client = polygon.StocksClient('KEY') # for usual sync client
async_stock_client = polygon.StocksClient('KEY', True) # for an async client

here is how the client initializer looks like:

polygon.stocks.stocks.StocksClient(api_key: str, use_async: bool = False, connect_timeout: int = 10,
read_timeout: int = 10, pool_timeout: int = 10, max_connections:
Optional[int] = None, max_keepalive: Optional[int] = None,
write_timeout: int = 10)

Initiates a Client to be used to access all REST Stocks endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• use_async – Set it to True to get async client. Defaults to usual non-async client.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout if
unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS. Do
NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults to
no limit. Do NOT change if you’re unsure of the applications.

15

polygon, Release 1.0.8

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

Endpoints
To use any of the below method, simply call it on the client you created above. so if you named your client client,
you’d call the methods as client.get_trades and so on. Async methods will need to be awaited, see Async Support
for REST endpoints.

2.1 Get Trades

SyncStocksClient.get_trades(symbol: str, date, timestamp: Optional[int] = None, timestamp_limit:
Optional[int] = None, reverse: bool = True, limit: int = 5000, raw_response:
bool = False)

Get trades for a given ticker symbol on a specified date. The response from polygon seems to have a map attribute
which gives a mapping of attribute names to readable values. Official Docs

Parameters
• symbol – The ticker symbol we want trades for.

• date – The date/day of the trades to retrieve. Could be datetime or date or string
YYYY-MM-DD

• timestamp – The timestamp offset, used for pagination. Timestamp is the offset at which to
start the results. Using the timestamp of the last result as the offset will give you the next
page of results. Default: None. I’m trying to think of a good way to implement pagination
support for this type of pagination.

• timestamp_limit – The maximum timestamp allowed in the results. Default: None

• reverse – Reverse the order of the results. Default True: oldest first. Make it False for
Newest first

• limit – Limit the size of the response, max 50000 and default 5000.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

2.2 Get Trades v3

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncStocksClient.get_trades_v3(symbol: str, timestamp: Optional[int] = None, order=None, sort=None,
limit: int = 5000, timestamp_lt=None, timestamp_lte=None,
timestamp_gt=None, timestamp_gte=None, all_pages: bool = False,
max_pages: Optional[int] = None, merge_all_pages: bool = True, verbose:
bool = False, raw_page_responses: bool = False, raw_response: bool =
False)

Get trades for a ticker symbol in a given time range. Official Docs

16 Chapter 2. Stocks

https://polygon.io/docs/stocks/get_v2_ticks_stocks_trades__ticker___date
https://polygon.io/docs/stocks/get_v3_trades__stockticker

polygon, Release 1.0.8

Parameters
• symbol – The ticker symbol you want trades for.

• timestamp – Query by trade timestamp. Could be datetime or date or string YYYY-MM-DD
or a nanosecond timestamp

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to None

• sort – field key to sort against. Defaults to None. see polygon.enums.
StocksTradesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value. Can
be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

2.2. Get Trades v3 17

polygon, Release 1.0.8

2.3 Get Quotes

SyncStocksClient.get_quotes(symbol: str, date, timestamp: Optional[int] = None, timestamp_limit:
Optional[int] = None, reverse: bool = True, limit: int = 5000, raw_response:
bool = False)

Get Quotes for a given ticker symbol on a specified date. The response from polygon seems to have a map
attribute which gives a mapping of attribute names to readable values. Official Docs

Parameters
• symbol – The ticker symbol we want quotes for.

• date – The date/day of the quotes to retrieve. Could be datetime or date or string
YYYY-MM-DD

• timestamp – The timestamp offset, used for pagination. Timestamp is the offset at which to
start the results. Using the timestamp of the last result as the offset will give you the next
page of results. Default: None. Thinking of a good way to implement this pagination here.

• timestamp_limit – The maximum timestamp allowed in the results. Default: None

• reverse – Reverse the order of the results. Default True: oldest first. Make it False for
Newest first

• limit – Limit the size of the response, max 50000 and default 5000.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

2.4 Get Quotes v3

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncStocksClient.get_quotes_v3(symbol: str, timestamp: Optional[int] = None, order=None, sort=None,
limit: int = 5000, timestamp_lt=None, timestamp_lte=None,
timestamp_gt=None, timestamp_gte=None, all_pages: bool = False,
max_pages: Optional[int] = None, merge_all_pages: bool = True, verbose:
bool = False, raw_page_responses: bool = False, raw_response: bool =
False)

Get NBBO Quotes for a ticker symbol in a given time range. Official Docs

Parameters
• symbol – The ticker symbol you want quotes for.

• timestamp – Query by trade timestamp. Could be datetime or date or string YYYY-MM-DD
or a nanosecond timestamp

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to None

• sort – field key to sort against. Defaults to None. see polygon.enums.
StocksQuotesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

18 Chapter 2. Stocks

https://polygon.io/docs/stocks/get_v2_ticks_stocks_nbbo__ticker___date
https://polygon.io/docs/stocks/get_v3_quotes__stockticker

polygon, Release 1.0.8

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value. Can
be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

2.5 Get Last Trade

SyncStocksClient.get_last_trade(symbol: str, raw_response: bool = False)
Get the most recent trade for a given stock. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

2.5. Get Last Trade 19

https://polygon.io/docs/stocks/get_v2_last_trade__stocksticker

polygon, Release 1.0.8

2.6 Get last Quote

SyncStocksClient.get_last_quote(symbol: str, raw_response: bool = False)
Get the most recent NBBO (Quote) tick for a given stock. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

2.7 Get Daily Open Close

SyncStocksClient.get_daily_open_close(symbol: str, date, adjusted: bool = True, raw_response: bool =
False)

Get the OCHLV and after-hours prices of a stock symbol on a certain date. Official Docs

Parameters
• symbol – The ticker symbol we want daily-OCHLV for.

• date – The date/day of the daily-OCHLV to retrieve. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

2.8 Get Aggregate Bars (Candles)

The library added a better aggregate function if you’re looking to get data for large time frames at minute/hour granu-
larity.

(for example 15 years historical data , 1 minute candles)

See Better Aggregate Bars function for complete details on how to use it well and control how it behaves.

SyncStocksClient.get_aggregate_bars(symbol: str, from_date, to_date, adjusted: bool = True, sort='asc',
limit: int = 5000, multiplier: int = 1, timespan='day', full_range:
bool = False, run_parallel: bool = True, max_concurrent_workers:
int = 10, warnings: bool = True, high_volatility: bool = False,
raw_response: bool = False)

20 Chapter 2. Stocks

https://polygon.io/docs/stocks/get_v2_last_nbbo__stocksticker
https://polygon.io/docs/stocks/get_v1_open-close__stocksticker___date

polygon, Release 1.0.8

Get aggregate bars for a stock over a given date range in custom time window sizes. For example, if timespan
= ‘minute’ and multiplier = ‘5’ then 5-minute bars will be returned. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• from_date – The start of the aggregate time window. Could be datetime or date or string
YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to false to get results that are NOT adjusted for splits.

• sort – Sort the results by timestamp. See polygon.enums.SortOrder for choices. asc
default.

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

• multiplier – The size of the timespan multiplier. Must be a positive whole number.

• timespan – The size of the time window. See polygon.enums.Timespan for choices.
defaults to day

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it will
run an internal ThreadPool to get the responses. This is fine to do if you are not running your
own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the async
version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to your
cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. Defaults
to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration (eg
SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t miss
any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If full_range=True, will return a single list with all the candles in it.

2.8. Get Aggregate Bars (Candles) 21

https://polygon.io/docs/stocks/get_v2_aggs_ticker__stocksticker__range__multiplier___timespan___from___to

polygon, Release 1.0.8

2.9 Get Grouped daily Bars (Candles)

SyncStocksClient.get_grouped_daily_bars(date, adjusted: bool = True, raw_response: bool = False)
Get the daily OCHLV for the entire stocks/equities markets. Official docs

Parameters
• date – The date to get the data for. Could be datetime or date or string YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

2.10 Get Previous Close

SyncStocksClient.get_previous_close(symbol: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s OCHLV for the specified stock ticker. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

2.11 Get Snapshot

SyncStocksClient.get_snapshot(symbol: str, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for a single traded
stock ticker. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

22 Chapter 2. Stocks

https://polygon.io/docs/stocks/get_v2_aggs_grouped_locale_us_market_stocks__date
https://polygon.io/docs/stocks/get_v2_aggs_ticker__stocksticker__prev
https://polygon.io/docs/stocks/get_v2_snapshot_locale_us_markets_stocks_tickers__stocksticker

polygon, Release 1.0.8

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

2.12 Get Snapshot (All)

SyncStocksClient.get_snapshot_all(symbols: Optional[list] = None, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for all traded stock
symbols. Official Docs

Parameters
• symbols – A comma separated list of tickers to get snapshots for. Defaults to ALL tickers

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

2.13 Get Current Price

SyncStocksClient.get_current_price(symbol: str)→ float
get current market price for the ticker symbol specified.

Uses get_last_trade() under the hood Official Docs

Parameters
symbol – The ticker symbol of the stock/equity.

Returns
The current price. A KeyError indicates the request wasn’t successful.

2.14 Get Gainers & Losers

SyncStocksClient.get_gainers_and_losers(direction='gainers', raw_response: bool = False)
Get the current top 20 gainers or losers of the day in stocks/equities markets. Official Docs

Parameters
• direction – The direction of results. Defaults to gainers. See polygon.enums.
SnapshotDirection for choices

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

2.12. Get Snapshot (All) 23

https://polygon.io/docs/stocks/get_v2_snapshot_locale_us_markets_stocks_tickers
https://polygon.io/docs/stocks/get_v2_last_trade__stocksticker
https://polygon.io/docs/stocks/get_v2_snapshot_locale_us_markets_stocks__direction

polygon, Release 1.0.8

24 Chapter 2. Stocks

CHAPTER

THREE

OPTIONS

Read this page to know everything you need to know about using the various Options HTTP endpoints.

See Async Support for REST endpoints for asynchronous use cases.

Docs below assume you have already read getting started page and know how to create the client. If you do not know
how to create the client, first see General guide for clients & functions and create client as below. As always you can
have all 5 different clients together.

import polygon

options_client = polygon.OptionsClient('KEY') # for usual sync client
async_options_client = polygon.OptionsClient('KEY', True) # for an async client

here is how the client initializer looks like:

polygon.options.options.OptionsClient(api_key: str, use_async: bool = False, connect_timeout: int = 10,
read_timeout: int = 10, pool_timeout: int = 10, max_connections:
Optional[int] = None, max_keepalive: Optional[int] = None,
write_timeout: int = 10)

Initiates a Client to be used to access all REST options endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• use_async – Set it to True to get async client. Defaults to usual non-async client.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout if
unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS. Do
NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults to
no limit. Do NOT change if you’re unsure of the applications.

25

polygon, Release 1.0.8

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

NOTE: if you don’t want to use the option symbol helper functions, then you can just go to the desired endpoint
documentation from the list to left

3.1 Working with Option Symbols

So when you’re working with options (rest/websockets), you’ll certainly need the option symbols which contain the
information about their underlying symbol, expiry, call_or_put and the strike price in a certain format. There are many
formats to represent them and every data source/brokerage uses a different format to represent them.

for example Polygon.io tends to use This Format . For those who want to understand how this formatting works, Here
is a guide (thanks to Ian from polygon support team).

The library is equipped with a few functions to make it easier for you to build, parse, convert, and detect format of
option symbols without worrying about how the structure works.

This section has been written again following many changes in v1.0.8. If you were using option symbology in v1.0.7
or older, the documentation for that version is available [here](https://polygon.readthedocs.io/en/1.0.7/) although I’d
suggest upgrading and making required (small) changes

The library supports the following symbol formats at the moment

Full Name Shorthand String
Polygon.io polygon
Tradier tradier
Trade Station trade_station
Interactive Brokers ibkr
TD Ameritrade tda
Think Or Swim tos

This section on option symbols is divided into these sections below.

1. Creating Option symbols from info as underlying, expiry, strike price, option type

2. Parsing Option symbols to extract info as underlying, expiry, strike price, option type

3. Converting an option symbol from one format to another. Works between all supported formats.

4. Detecting format of an option symbol. Basic detection based on some simple rules.

3.1.1 Creating Option Symbols

The function in this sub-section helps you to build option symbols from info as underlying symbol, expiry, strike price
& option type (call/put). The function to use is polygon.build_option_symbol

• Since the default format is polygon.io you don’t need to specify a format if you’re only working with polygon
option symbols.

• Polygon has a rest endpoint in reference client to get all active contracts which you can filter based on many
values such as underlying symbol and expiry dates.

• In polygon format, If you wonder whether you need to worry about the O: prefix which some/all option endpoints
expect, then to your ease, the library handles that for you (So you can pass a symbol without prefix to let’s

26 Chapter 3. Options

https://www.optionstaxguy.com/option-symbols-osi
https://docs.google.com/document/d/15WYmleETJwB2S80vuj8muWr6DNBIFmcmiB_UmHTosFg/edit
https://docs.google.com/document/d/15WYmleETJwB2S80vuj8muWr6DNBIFmcmiB_UmHTosFg/edit
https://polygon.readthedocs.io/en/1.0.7/

polygon, Release 1.0.8

say Option Snapshot function and the prefix will be added internally). If you want to be explicit, just pass
prefix_o=True when building symbol.

• Note that both tradier and polygon happen to use the exact same symbol format and hence can be used inter-
changeably.

Example Code & Output for polygon/tradier format

import polygon

symbol1 = polygon.build_option_symbol('AMD', datetime.date(2022, 6, 28), 'call', 546.56)
symbol2 = polygon.build_option_symbol('TSLA', '220628', 'c', 546, _format='polygon')
symbol3 = polygon.build_option_symbol('A', '220628', 'put', 66.01, prefix_o=True)

Outputs
symbol1 -> AMD220628C00546560
symbol2 -> TSLA220628C00546000
symbol3 -> O:A220628P00066010

The same function can be used to create option symbols for any of the supported formats, just pass in the format you
need, either as a shorthand string from the table above, or use an enum from polygon.enums.OptionSymbolFormat

• Using enums (like OptionSymbolFormat.POLYGON in example below) is a good way to ensure you only pass
in correct shorthand strings. Your IDE auto completion would make your life much easier when working with
enums.

Example code & outputs for multiple formats

from polygon import build_option_symbol # you can import the way you like, just showing␣
→˓the alternates
from polygon.enums import OptionSymbolFormat # optional, you can pass in shorthand␣
→˓strings too

symbol1 = polygon.build_option_symbol('AMD', datetime.date(2022, 6, 28), 'call', 546.56,␣
→˓_format='tda')
symbol2 = polygon.build_option_symbol('NVDA', '220628', 'c', 546, _format='tos')
symbol3 = polygon.build_option_symbol('TSLA', datetime.date(2022, 6, 28), 'put', 46.01, _
→˓format='tradier')
symbol4 = polygon.build_option_symbol('A', datetime.date(2022, 6, 28), 'p', 46.1, _
→˓format='ibkr')
symbol5 = polygon.build_option_symbol('AB', datetime.date(2022, 6, 28), 'p', 46.01, _
→˓format='trade_station')
symbol6 = polygon.build_option_symbol('PTON', '220628', 'p', 46, _
→˓format=OptionSymbolFormat.POLYGON) # using enum

outputs
symbol1 -> AMD_062822C546.56
symbol2 -> .NVDA062822C546
symbol3 -> TSLA220628P00046010
symbol4 -> A 220628P00046100
symbol5 -> AB 220628P46.01
symbol5 -> PTON220628P00046000

For those who want more control, here is how the function signature and arguments look

polygon.options.options.build_option_symbol(underlying_symbol: str, expiry, call_or_put, strike_price,
_format='polygon', prefix_o: bool = False)→ str

3.1. Working with Option Symbols 27

polygon, Release 1.0.8

Generic function to build option symbols for ALL supported formats: polygon.enums.OptionSymbolFormat.
Default format is polygon.

Parameters
• underlying_symbol – The underlying stock ticker symbol.

• expiry – The expiry date for the option. You can pass this argument as datetime.
datetime or datetime.date object. Or a string in format: YYMMDD. Using datetime objects
is recommended.

• call_or_put – The option type. You can specify: c or call or p or put. Capital letters
are also supported.

• strike_price – The strike price for the option. ALWAYS pass this as one number. 145,
240.5, 15.003, 56, 129.02 are all valid values. Try to keep up to 3 digits after the decimal
point

• _format – The format to use when building symbol. Defaults to polygon. Supported
formats are polygon, tda, tos, ibkr, tradier, trade_station. If you prefer to
use convenient enums, see polygon.enums.OptionSymbolFormat

• prefix_o – Whether to prefix the symbol with O:. It is needed by polygon endpoints.
However, all the library functions will automatically add this prefix if you pass in symbols
without this prefix. This parameter is ignored if format is not polygon

Returns
The option symbols string in the format specified

3.1.2 Parsing Option Symbols

The function in this sub-section helps you to extract info as underlying symbol, expiry, strike price & option type
(call/put) from an existing option symbol. Parsing is available on all supported formats. The function to use is
polygon.build_option_symbol

• Since the default format is polygon, you don’t need to specify a format if you’re only working with polygon
option symbols.

• Polygon symbols can be passed in with or without the prefix O:. Library will handle both internally

• Note that both tradier and polygon happen to use the exact same symbol format and hence can be used inter-
changeably.

• It is observed that some option symbols as returned by polygon endpoints happen to have a correction number
within the symbol. The additional number is always between the underlying symbol and expiry. The lib handles
that for you & parses the symbol accordingly.

• An example of the corrected polygon symbol could be XY1221015C00234000. Notice the extra 1 after XY and
before expiry 221015. The library would parse this symbol as XY221015C00234000. The number could be any
number according to a response from polygon support team.

NOTE: The parse function takes another optional argument, output_format, defaulting to 'object'. Here is what
it is for and how you can use it to your advantage.

Output Format
The library provides 3 possible output formats when getting parsed info from an option symbol. They are

• An object of class polygon.options.options.OptionSymbol (Default). You can access info as

• obj.strike_price

28 Chapter 3. Options

polygon, Release 1.0.8

• obj.underlying_symbol

• obj.expiry

• obj.call_or_put

• obj.option_symbol

• As a list having elements: [underlying_symbol, expiry, call_or_put, strike_price,
option_symbol] in this fixed order

• As a dict having the following keys:

• underlying_symbol

• expiry

• call_or_put

• strike_price

• option_symbol

Example code and output for polygon/tradier formats

import polygon

parsed_details1 = polygon.parse_option_symbol('AMD211205C00156000')
parsed_details2 = polygon.parse_option_symbol('AMD211205C00156000', output_format=list)
parsed_details3 = polygon.parse_option_symbol('AMD211205C00156000', output_format=dict)

outputs
parsed_details1 would be an object having info as attributes as described in output␣
→˓format sub-section above
parsed_details2 -> ['AMD', dt.date(2021, 12, 5), 'C', 156, 'AMD211205C00156000']
parsed_details3 -> {'underlying_symbol': 'AMD', 'expiry': dt.date(2021, 12, 5), 'call_or_put
→˓': 'C', 'strike_price': 156, 'option_symbol': 'AMD211205C00156000'}

The same function can be used to parse option symbols in any of the supported formats, just pass in the format you
need, either as a shorthand string from the table above, or use an enum from polygon.enums.OptionSymbolFormat

• Using enums (like OptionSymbolFormat.POLYGON in example below) is a good way to ensure you only pass
in correct shorthand strings. Your IDE auto completion would make your life much easier when working with
enums.

Example code & outputs for multiple formats

import polygon

parsed_details1 = polygon.parse_option_symbol('AMD211205C00156000', _format='tradier')
parsed_details2 = polygon.parse_option_symbol('AMD_062822P587.56', _format='tda', output_
→˓format=list)
parsed_details3 = polygon.parse_option_symbol('AB 220628P46.01', _format='trade_station',
→˓ output_format=dict)

outputs
parsed_details1 would be an object having info as attributes as described in output␣
→˓format sub-section above
parsed_details2 -> ['AMD', dt.date(2022, 6, 28), 'P', 587.56, 'AMD_062822P587.56']
parsed_details3 -> {'underlying_symbol': 'AB', 'expiry': dt.date(2022, 6, 28), 'call_or_put
→˓': 'P', 'strike_price': 46.01, 'option_symbol': 'AB 220628P46.01'} (continues on next page)

3.1. Working with Option Symbols 29

polygon, Release 1.0.8

(continued from previous page)

For those who want more control, here is how the function signature and arguments look

polygon.options.options.parse_option_symbol(option_symbol: str, _format='polygon',
output_format='object')

Generic function to build option symbols for ALL supported formats: polygon.enums.OptionSymbolFormat.
Default format is polygon.

Parameters
• option_symbol – the option symbol you want to parse

• _format – What format the symbol is in. If you don’t know the format you can use
the detect_option_symbol_format function to detect the format (best effort detection).
Supported formats are polygon, tda, tos, ibkr, tradier, trade_station. If you
prefer to use convenient enums, see polygon.enums.OptionSymbolFormat. Default:
polygon

• output_format – Output format of the result. defaults to object. Set it to dict or list as
needed.

Returns
The parsed info from symbol either as an object, list or a dict as indicated by output_format.

3.1.3 Converting Option Symbol Formats

The function in this sub-section helps you to convert an option symbol from one format to another. So if you want to
convert a polygon option symbol to TD Ameritrade symbol (say to place an order), pass the symbol in this function,
specify the formats and the library will do the conversions for you.

Example code and outputs

import polygon

symbol1 = polygon.convert_option_symbol_formats('AMD220628P00096050', from_format=
→˓'polygon', to_format='tda')
symbol2 = polygon.convert_option_symbol_formats('AB 220628P46.01', from_format='trade_
→˓station', to_format='polygon')
symbol2 = polygon.convert_option_symbol_formats('NVDA220628C00546000', 'tradier', 'tos')

outputs
symbol1 -> AMD_062822P96.05
symbol2 -> AB220628P00046010
symbol3 -> .NVDA062822C546

For those who want more control, here is how the function signature and arguments look

polygon.options.options.convert_option_symbol_formats(option_symbol: str, from_format: str,
to_format: str)→ str

Convert an option symbol from one format to another within supported formats: polygon.enums.
OptionSymbolFormat

Parameters
• option_symbol – The option symbol you want to convert

30 Chapter 3. Options

polygon, Release 1.0.8

• from_format – The format in which the option symbol is currently in. If you don’t
know the format you can use the detect_option_symbol_format function to detect
the format (best effort detection). Supported formats are polygon, tda, tos, ibkr,
tradier, trade_station. If you prefer to use convenient enums, see polygon.enums.
OptionSymbolFormat

• to_format – The format to which you want to convert the option symbol. Supported for-
mats are polygon, tda, tos, ibkr, tradier, trade_station. If you prefer to use
convenient enums, see polygon.enums.OptionSymbolFormat

Returns
The converted option symbol as a string

3.1.4 Detecting Option Symbol Format

The function in this sub-section helps you to detect the symbol format of an option symbol programmatically. The
function does basic detection according to some simple rules so test well before using this in production setting. It is
almost always recommended to be explicit about formats.

Example code and outputs

import polygon

format1 = polygon.detect_option_symbol_format('AMD_062822P96.05')
format2 = polygon.detect_option_symbol_format('AB220628P00046010')
format3 = polygon.detect_option_symbol_format('.NVDA062822C546')
format4 = polygon.detect_option_symbol_format('AB 220628P46.01')
format5 = polygon.detect_option_symbol_format('AB 220628P00046045')

outputs
format1 -> 'tda'
format2 -> 'polygon' # this also means tradier since both use exact same format
format3 -> 'tos'
format4 -> 'trade_station'
format5 -> ['ibkr', 'trade_station']

For those who want more control, here is how the function signature and arguments look

polygon.options.options.detect_option_symbol_format(option_symbol: str)→ Union[str, bool, list]
Detect what format a symbol is formed in. Supported formats are polygon.enums.OptionSymbolFormat.
This function does basic detection according to some simple rules. Test well before using in production.

Parameters
option_symbol – The option symbol to check the format of

Returns
Format’s shorthand string or list of strings if able to recognize the format. False otherwise.
Possible shorthand strings are polygon, tda, tos, ibkr, tradier, trade_station

Endpoints:
To use any of the below method, simply call it on the client you created above. so if you named your client client,
you’d call the methods as client.get_trades and so on. Async methods will need to be awaited, see Async Support
for REST endpoints.

3.1. Working with Option Symbols 31

polygon, Release 1.0.8

3.2 Get Trades

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncOptionsClient.get_trades(option_symbol: str, timestamp=None, timestamp_lt=None,
timestamp_lte=None, timestamp_gt=None, timestamp_gte=None,
sort='timestamp', limit: int = 5000, order='asc', all_pages: bool = False,
max_pages: Optional[int] = None, merge_all_pages: bool = True, verbose:
bool = False, raw_page_responses: bool = False, raw_response: bool =
False)

Get trades for an options ticker symbol in a given time range. Note that you need to have an option symbol in
correct format for this endpoint. You can use ReferenceClient.get_option_contracts to query option
contracts using many filter parameters such as underlying symbol etc. Official Docs

Parameters
• option_symbol – The options ticker symbol to get trades for. for eg
O:TSLA210903C00700000. you can pass the symbol with or without the prefix O:

• timestamp – Query by trade timestamp. You can supply a date, datetime object or a
nanosecond UNIX timestamp or a string in format: YYYY-MM-DD.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value. Can
be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• sort – Sort field used for ordering. Defaults to timestamp. See polygon.enums.
OptionTradesSort for available choices.

• limit – Limit the number of results returned. Defaults to 5000. max is 50000.

• order – order of the results. Defaults to asc. See polygon.enums.SortOrder for info
and available choices.

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

32 Chapter 3. Options

https://polygon.io/docs/options/get_v3_trades__optionsticker

polygon, Release 1.0.8

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

3.3 Get Quotes

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncOptionsClient.get_quotes(option_symbol: str, timestamp=None, timestamp_lt=None,
timestamp_lte=None, timestamp_gt=None, timestamp_gte=None,
sort='timestamp', limit: int = 5000, order='asc', all_pages: bool = False,
max_pages: Optional[int] = None, merge_all_pages: bool = True, verbose:
bool = False, raw_page_responses: bool = False, raw_response: bool =
False)

Get quotes for an options ticker symbol in a given time range. Note that you need to have an option symbol
in correct format for this endpoint. You can use ReferenceClient.get_option_contracts to query option
contracts using many filter parameters such as underlying symbol etc. Official Docs

Parameters
• option_symbol – The options ticker symbol to get quotes for. for eg
O:TSLA210903C00700000. you can pass the symbol with or without the prefix O:

• timestamp – Query by quote timestamp. You can supply a date, datetime object or a
nanosecond UNIX timestamp or a string in format: YYYY-MM-DD.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value. Can
be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• sort – Sort field used for ordering. Defaults to timestamp. See polygon.enums.
OptionQuotesSort for available choices.

• limit – Limit the number of results returned. Defaults to 5000. max is 50000.

• order – order of the results. Defaults to asc. See polygon.enums.SortOrder for info
and available choices.

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or

3.3. Get Quotes 33

https://polygon.io/docs/options/get_v3_quotes__optionsticker

polygon, Release 1.0.8

decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

3.4 Get Last Trade

SyncOptionsClient.get_last_trade(ticker: str, raw_response: bool = False)
Get the most recent trade for a given options contract. Official Docs

Parameters
• ticker – The ticker symbol of the options contract. Eg: O:TSLA210903C00700000

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
Either a Dictionary or a Response object depending on value of raw_response. Defaults to
Dict.

3.5 Get Daily Open Close

SyncOptionsClient.get_daily_open_close(symbol: str, date, adjusted: bool = True, raw_response: bool =
False)

Get the OCHLV and after-hours prices of a contract on a certain date. Official Docs

Parameters
• symbol – The option symbol we want daily-OCHLV for. eg O:FB210903C00700000. You

can pass it with or without the prefix O:

• date – The date/day of the daily-OCHLV to retrieve. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

34 Chapter 3. Options

https://polygon.io/docs/options/get_v2_last_trade__optionsticker
https://polygon.io/docs/options/get_v1_open-close__optionsticker___date

polygon, Release 1.0.8

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

3.6 Get Aggregate Bars

The library added a better aggregate function if you’re looking to get data for large time frames at minute/hour granu-
larity.

(for example 15 years historical data , 1 minute candles)

See Better Aggregate Bars function for complete details on how to use it well and control how it behaves.

SyncOptionsClient.get_aggregate_bars(symbol: str, from_date, to_date, adjusted: bool = True, sort='asc',
limit: int = 5000, multiplier: int = 1, timespan='day', full_range:
bool = False, run_parallel: bool = True, max_concurrent_workers:
int = 10, warnings: bool = True, high_volatility: bool = False,
raw_response: bool = False)

Get aggregate bars for an option contract over a given date range in custom time window sizes. For example, if
timespan = ‘minute’ and multiplier = ‘5’ then 5-minute bars will be returned. Official Docs

Parameters
• symbol – The ticker symbol of the contract. eg O:FB210903C00700000. You can pass in

with or without the prefix O:

• from_date – The start of the aggregate time window. Could be datetime or date or string
YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to false to get results that are NOT adjusted for splits.

• sort – Sort the results by timestamp. See polygon.enums.SortOrder for choices. asc
default.

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000. see this article for more info.

• multiplier – The size of the timespan multiplier. Must be a positive whole number. de-
faults to 1.

• timespan – The size of the time window. See polygon.enums.Timespan for choices.
defaults to day

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it will
run an internal ThreadPool to get the responses. This is fine to do if you are not running your
own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the async
version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to your
cpu cores * 5. controls how many worker threads to use in internal ThreadPool

3.6. Get Aggregate Bars 35

https://polygon.io/docs/options/get_v2_aggs_ticker__optionsticker__range__multiplier___timespan___from___to
https://polygon.io/blog/aggs-api-updates/

polygon, Release 1.0.8

• warnings – Set to False to disable printing warnings if any when fetching the aggs. Defaults
to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration (eg
SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t miss
any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If full_range=True, will return a single list with all the candles in it.

3.7 Get Previous Close

SyncOptionsClient.get_previous_close(ticker: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s open, high, low, and close (OHLC) for the specified option contract. Official Docs

Parameters
• ticker – The ticker symbol of the options contract. Eg: O:TSLA210903C00700000

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
Either a Dictionary or a Response object depending on value of raw_response. Defaults to
Dict.

3.8 Get Snapshot

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncOptionsClient.get_snapshot(underlying_symbol: str, option_symbol: str, all_pages: bool = False,
max_pages: Optional[int] = None, merge_all_pages: bool = True, verbose:
bool = False, raw_page_responses: bool = False, raw_response: bool =
False)

Get the snapshot of an option contract for a stock equity. Official Docs

Parameters
• underlying_symbol – The underlying ticker symbol of the option contract. eg AMD

• option_symbol – the option symbol. You can use use the Working with Option Symbols
section to make it easy to work with option symbols in polygon or tda formats.

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

36 Chapter 3. Options

https://polygon.io/docs/options/get_v2_aggs_ticker__optionsticker__prev
https://polygon.io/docs/options/get_v3_snapshot_options__underlyingasset___optioncontract

polygon, Release 1.0.8

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

3.8. Get Snapshot 37

polygon, Release 1.0.8

38 Chapter 3. Options

CHAPTER

FOUR

REFERENCE APIS

Read this page to know everything you need to know about using the various References HTTP endpoints.

See Async Support for REST endpoints for asynchronous use cases.

Docs below assume you have already read getting started page and know how to create the client. If you do not know
how to create the client, first see General guide for clients & functions and create client as below. As always you can
have all 5 different clients together.

import polygon

reference_client = polygon.ReferenceClient('KEY') # for usual sync client
async_reference_client = polygon.ReferenceClient('KEY', True) # for an async client

here is how the client initializer looks like:

polygon.reference_apis.reference_api.ReferenceClient(api_key: str, use_async: bool = False,
connect_timeout: int = 10, read_timeout: int =
10, pool_timeout: int = 10, max_connections:
Optional[int] = None, max_keepalive:
Optional[int] = None, write_timeout: int = 10)

Initiates a Client to be used to access all REST References endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• use_async – Set it to True to get async client. Defaults to usual non-async client.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout if
unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS. Do
NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults to
no limit. Do NOT change if you’re unsure of the applications.

39

polygon, Release 1.0.8

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

Endpoints
To use any of the below method, simply call it on the client you created above. so if you named your client client,
you’d call the methods as client.get_tickers and so on. Async methods will need to be awaited, see Async Support
for REST endpoints.

4.1 Get Tickers

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncReferenceClient.get_tickers(symbol: str = '', ticker_lt=None, ticker_lte=None, ticker_gt=None,
ticker_gte=None, symbol_type='', market='', exchange: str = '', cusip:
Optional[str] = None, cik: str = '', date=None, search: Optional[str] =
None, active: bool = True, sort='ticker', order='asc', limit: int = 1000,
all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False,
raw_page_responses: bool = False, raw_response: bool = False)

Query all ticker symbols which are supported by Polygon.io. This API currently includes Stocks/Equities,
Crypto, and Forex. Official Docs

Parameters
• symbol – Specify a ticker symbol. Defaults to empty string which queries all tickers.

• ticker_lt – Return results where this field is less than the value given

• ticker_lte – Return results where this field is less than or equal to the value given

• ticker_gt – Return results where this field is greater than the value given

• ticker_gte – Return results where this field is greater than or equal to the value given

• symbol_type – Specify the type of the tickers. See polygon.enums.TickerType for com-
mon choices. Find all supported types via the Ticker Types API Defaults to empty string
which queries all types.

• market – Filter by market type. By default all markets are included. See polygon.enums.
TickerMarketType for available choices.

• exchange – Specify the primary exchange of the asset in the ISO code format. Find more
information about the ISO codes at the ISO org website. Defaults to empty string which
queries all exchanges.

• cusip – Specify the CUSIP code of the asset you want to search for. Find more information
about CUSIP codes on their website Defaults to empty string which queries all CUSIPs

• cik – Specify the CIK of the asset you want to search for. Find more information about CIK
codes at their website Defaults to empty string which queries all CIKs.

• date – Specify a point in time to retrieve tickers available on that date. Defaults to the most
recent available date. Could be datetime, date or a string YYYY-MM-DD

• search – Search for terms within the ticker and/or company name. for eg MS will match
matching symbols

40 Chapter 4. Reference APIs

https://polygon.io/docs/stocks/get_v3_reference_tickers
https://polygon.io/docs/stocks/get_v3_reference_tickers_types
https://www.iso20022.org/market-identifier-codes
https://www.cusip.com/identifiers.html#/CUSIP
https://www.sec.gov/edgar/searchedgar/cik.htm

polygon, Release 1.0.8

• active – Specify if the tickers returned should be actively traded on the queried date. Default
is True

• sort – The field to sort the results on. Default is ticker. If the search query parameter
is present, sort is ignored and results are ordered by relevance. See polygon.enums.
TickerSortType for available choices.

• order – The order to sort the results on. Default is asc. See polygon.enums.SortOrder
for available choices.

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

4.2 Get Ticker Types

SyncReferenceClient.get_ticker_types(asset_class=None, locale=None, raw_response: bool = False)
Get a mapping of ticker types to their descriptive names. Official Docs

Parameters
• asset_class – Filter by asset class. see polygon.enums.AssetClass for choices

• locale – Filter by locale. See polygon.enums.Locale for choices

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

4.2. Get Ticker Types 41

https://polygon.io/docs/stocks/get_v3_reference_tickers_types

polygon, Release 1.0.8

4.3 Get Ticker Details

SyncReferenceClient.get_ticker_details(symbol: str, date=None, raw_response: bool = False)
Get a single ticker supported by Polygon.io. This response will have detailed information about the ticker and
the company behind it. Official Docs

Parameters
• symbol – The ticker symbol of the asset.

• date – Specify a point in time to get information about the ticker available on that date. When
retrieving information from SEC filings, we compare this date with the period of report date
on the SEC filing. Defaults to the most recent available date.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

4.4 Get Option Contract

SyncReferenceClient.get_option_contract(ticker: str, as_of_date=None, raw_response: bool = False)
get Info about an option contract Official Docs

Parameters
• ticker – An option ticker in standard format. The lib provides easy functions to build and

work with option symbols

• as_of_date – Specify a point in time for the contract. You can pass a datetime or date
object or a string in format YYYY-MM-DD. Defaults to today’s date

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

4.5 Get Option Contracts

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncReferenceClient.get_option_contracts(underlying_ticker: Optional[str] = None, ticker: Optional[str]
= None, contract_type=None, expiration_date=None,
expiration_date_lt=None, expiration_date_lte=None,
expiration_date_gt=None, expiration_date_gte=None,
order='asc', sort='expiration_date', limit=1000, all_pages:
bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False,
raw_page_responses: bool = False, raw_response: bool =
False)

42 Chapter 4. Reference APIs

https://polygon.io/docs/stocks/get_v3_reference_tickers__ticker
https://polygon.io/docs/options/get_v3_reference_options_contracts__options_ticker
https://polygon.readthedocs.io/en/latest/Options.html#creating-option-symbols

polygon, Release 1.0.8

List currently active options contracts Official Docs

Parameters
• underlying_ticker – Query for contracts relating to an underlying stock ticker.

• ticker – Query for a contract by option ticker.

• contract_type – Query by the type of contract. see polygon.enums.
OptionsContractType for choices

• expiration_date – Query by contract expiration date. either datetime, date or string
YYYY-MM-DD

• expiration_date_lt – expiration date less than given value

• expiration_date_lte – expiration date less than equal to given value

• expiration_date_gt – expiration_date greater than given value

• expiration_date_gte – expiration_date greater than equal to given value

• order – Order of results. See polygon.enums.SortOrder for choices.

• sort – Sort field for ordering. See polygon.enums.OptionsContractsSortType for
choices. defaults to expiration_date

• limit – Limit the size of the response, default is 1000. Pagination is supported by the
pagination function below

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

4.5. Get Option Contracts 43

https://polygon.io/docs/options/get_v3_reference_options_contracts

polygon, Release 1.0.8

4.6 Get Ticker News

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncReferenceClient.get_ticker_news(symbol: Optional[str] = None, limit: int = 1000, order='desc',
sort='published_utc', ticker_lt=None, ticker_lte=None,
ticker_gt=None, ticker_gte=None, published_utc=None,
published_utc_lt=None, published_utc_lte=None,
published_utc_gt=None, published_utc_gte=None, all_pages: bool =
False, max_pages: Optional[int] = None, merge_all_pages: bool =
True, verbose: bool = False, raw_page_responses: bool = False,
raw_response: bool = False)

Get the most recent news articles relating to a stock ticker symbol, including a summary of the article and a link
to the original source. Official Docs

Parameters
• symbol – To get news mentioning the name given. Defaults to empty string which doesn’t

filter tickers

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• order – Order the results. See polygon.enums.SortOrder for choices.

• sort – The field key to sort. See polygon.enums.TickerNewsSort for choices.

• ticker_lt – Return results where this field is less than the value.

• ticker_lte – Return results where this field is less than or equal to the value.

• ticker_gt – Return results where this field is greater than the value

• ticker_gte – Return results where this field is greater than or equal to the value.

• published_utc – A date string YYYY-MM-DD or datetime for published date time filters.

• published_utc_lt – Return results where this field is less than the value given

• published_utc_lte – Return results where this field is less than or equal to the value given

• published_utc_gt – Return results where this field is greater than the value given

• published_utc_gte – Return results where this field is greater than or equal to the value
given

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

44 Chapter 4. Reference APIs

https://polygon.io/docs/options/get_v2_reference_news

polygon, Release 1.0.8

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

4.7 Get Stock dividends

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncReferenceClient.get_stock_dividends(ticker: Optional[str] = None, ex_dividend_date=None,
record_date=None, declaration_date=None, pay_date=None,
frequency: Optional[int] = None, limit: int = 1000,
cash_amount=None, dividend_type=None, sort: str =
'pay_date', order: str = 'asc', ticker_lt=None, ticker_lte=None,
ticker_gt=None, ticker_gte=None, ex_dividend_date_lt=None,
ex_dividend_date_lte=None, ex_dividend_date_gt=None,
ex_dividend_date_gte=None, record_date_lt=None,
record_date_lte=None, record_date_gt=None,
record_date_gte=None, declaration_date_lt=None,
declaration_date_lte=None, declaration_date_gt=None,
declaration_date_gte=None, pay_date_lt=None,
pay_date_lte=None, pay_date_gt=None, pay_date_gte=None,
cash_amount_lt=None, cash_amount_lte=None,
cash_amount_gt=None, cash_amount_gte=None, all_pages:
bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False,
raw_page_responses: bool = False, raw_response: bool =
False)

Get a list of historical cash dividends, including the ticker symbol, declaration date, ex-dividend date, record
date, pay date, frequency, and amount. Official Docs

Parameters
• ticker – Return the dividends that contain this ticker.

• ex_dividend_date – Query by ex-dividend date. could be a date, datetime object or a
string YYYY-MM-DD

• record_date – Query by record date. could be a date, datetime object or a string
YYYY-MM-DD

• declaration_date – Query by declaration date. could be a date, datetime object or a string
YYYY-MM-DD

• pay_date – Query by pay date. could be a date, datetime object or a string YYYY-MM-DD

• frequency – Query by the number of times per year the dividend is paid out. No default
value applied. see polygon.enums.PayoutFrequency for choices

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

4.7. Get Stock dividends 45

https://polygon.io/docs/stocks/get_v3_reference_dividends

polygon, Release 1.0.8

• cash_amount – Query by the cash amount of the dividend.

• dividend_type – Query by the type of dividend. See polygon.enums.DividendType
for choices

• sort – sort key used for ordering. See polygon.enums.DividendSort for choices.

• order – orders of results. defaults to asc. see polygon.enums.SortOrder for choices

• ticker_lt – filter where ticker is less than given value (alphabetically)

• ticker_lte – filter where ticker is less than or equal to given value (alphabetically)

• ticker_gt – filter where ticker is greater than given value (alphabetically)

• ticker_gte – filter where ticker is greater than or equal to given value (alphabetically)

• ex_dividend_date_lt – filter where ex-div date is less than given date

• ex_dividend_date_lte – filter where ex-div date is less than or equal to given date

• ex_dividend_date_gt – filter where ex-div date is greater than given date

• ex_dividend_date_gte – filter where ex-div date is greater than or equal to given date

• record_date_lt – filter where record date is less than given date

• record_date_lte – filter where record date is less than or equal to given date

• record_date_gt – filter where record date is greater than given date

• record_date_gte – filter where record date is greater than or equal to given date

• declaration_date_lt – filter where declaration date is less than given date

• declaration_date_lte – filter where declaration date is less than or equal to given date

• declaration_date_gt – filter where declaration date is greater than given date

• declaration_date_gte – filter where declaration date is greater than or equal to given
date

• pay_date_lt – filter where pay date is less than given date

• pay_date_lte – filter where pay date is less than or equal to given date

• pay_date_gt – filter where pay date is greater than given date

• pay_date_gte – filter where pay date is greater than or equal to given date

• cash_amount_lt – filter where cash amt is less than given value

• cash_amount_lte – filter where cash amt is less than or equal to given value

• cash_amount_gt – filter where cash amt is greater than given value

• cash_amount_gte – filter where cash amt is greater than or equal to given value

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

46 Chapter 4. Reference APIs

polygon, Release 1.0.8

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

4.8 Get Stock financials vX

SyncReferenceClient.get_stock_financials_vx(ticker: Optional[str] = None, cik: Optional[str] = None,
company_name: Optional[str] = None,
company_name_search: Optional[str] = None, sic:
Optional[str] = None, filing_date=None,
filing_date_lt=None, filing_date_lte=None,
filing_date_gt=None, filing_date_gte=None,
period_of_report_date=None,
period_of_report_date_lt=None,
period_of_report_date_lte=None,
period_of_report_date_gt=None,
period_of_report_date_gte=None, time_frame=None,
include_sources: bool = False, order='asc', limit: int = 50,
sort='filing_date', raw_response: bool = False)

Get historical financial data for a stock ticker. The financials data is extracted from XBRL from company SEC
filings using this methodology Official Docs

This API is experimental and will replace get_stock_financials() in future.

Parameters
• ticker – Filter query by company ticker.

• cik – filter the Query by central index key (CIK) Number

• company_name – filter the query by company name

• company_name_search – partial match text search for company names

• sic – Query by standard industrial classification (SIC)

• filing_date – Query by the date when the filing with financials data was filed. datetime/
date or string YYYY-MM-DD

• filing_date_lt – filter for filing date less than given value

• filing_date_lte – filter for filing date less than equal to given value

• filing_date_gt – filter for filing date greater than given value

• filing_date_gte – filter for filing date greater than equal to given value

• period_of_report_date – query by The period of report for the filing with financials data.
datetime/date or string in format: YYY-MM-DD.

4.8. Get Stock financials vX 47

http://xbrl.squarespace.com/understanding-sec-xbrl-financi/
https://polygon.io/docs/stocks/get_vx_reference_financials

polygon, Release 1.0.8

• period_of_report_date_lt – filter for period of report date less than given value

• period_of_report_date_lte – filter for period of report date less than equal to given
value

• period_of_report_date_gt – filter for period of report date greater than given value

• period_of_report_date_gte – filter for period of report date greater than equal to given
value

• time_frame – Query by timeframe. Annual financials originate from 10-K filings,
and quarterly financials originate from 10-Q filings. Note: Most companies do not
file quarterly reports for Q4 and instead include those financials in their annual report,
so some companies my not return quarterly financials for Q4. See polygon.enums.
StockFinancialsTimeframe for choices.

• include_sources – Whether or not to include the xpath and formula attributes for each
financial data point. See the xpath and formula response attributes for more info. False by
default

• order – Order results based on the sort field. ‘asc’ by default. See polygon.enums.
SortOrder for choices.

• limit – number of max results to obtain. defaults to 50.

• sort – Sort field key used for ordering. ‘filing_date’ default. see polygon.enums.
StockFinancialsSortKey for choices.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

4.9 Get Stock Splits

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncReferenceClient.get_stock_splits(ticker: Optional[str] = None, execution_date=None, reverse_split:
Optional[bool] = None, order: str = 'asc', sort: str =
'execution_date', limit: int = 1000, ticker_lt=None, ticker_lte=None,
ticker_gt=None, ticker_gte=None, execution_date_lt=None,
execution_date_lte=None, execution_date_gt=None,
execution_date_gte=None, all_pages: bool = False, max_pages:
Optional[int] = None, merge_all_pages: bool = True, verbose: bool
= False, raw_page_responses: bool = False, raw_response: bool =
False)

Get a list of historical stock splits, including the ticker symbol, the execution date, and the factors of the split
ratio. Official Docs

Parameters
• ticker – Return the stock splits that contain this ticker. defaults to no ticker filter returning

all.

• execution_date – query by execution date. could be a date, datetime object or a string
YYYY-MM-DD

48 Chapter 4. Reference APIs

https://polygon.io/docs/stocks/get_v3_reference_splits

polygon, Release 1.0.8

• reverse_split – Query for reverse stock splits. A split ratio where split_from is greater
than split_to represents a reverse split. By default this filter is not used.

• order – Order results based on the sort field. defaults to ascending. See polygon.enums.
SortOrder for choices

• sort – Sort field used for ordering. Defaults to ‘execution_date’. See polygon.enums.
SplitsSortKey for choices.

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• ticker_lt – filter where ticker name is less than given value (alphabetically)

• ticker_lte – filter where ticker name is less than or equal to given value (alphabetically)

• ticker_gt – filter where ticker name is greater than given value (alphabetically)

• ticker_gte – filter where ticker name is greater than or equal to given value (alphabetically)

• execution_date_lt – filter where execution date is less than given value

• execution_date_lte – filter where execution date is less than or equal to given value

• execution_date_gt – filter where execution date is greater than given value

• execution_date_gte – filter where execution date is greater than or equal to given value

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

4.9. Get Stock Splits 49

polygon, Release 1.0.8

4.10 Get Market Holidays

SyncReferenceClient.get_market_holidays(raw_response: bool = False)
Get upcoming market holidays and their open/close times. Official Docs

Parameters
raw_response – Whether or not to return the Response Object. Useful for when you need to
say check the status code or inspect the headers. Defaults to False which returns the json decoded
dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

4.11 Get Market Status

SyncReferenceClient.get_market_status(raw_response: bool = False)
Get the current trading status of the exchanges and overall financial markets. Official Docs

Parameters
raw_response – Whether or not to return the Response Object. Useful for when you need to
say check the status code or inspect the headers. Defaults to False which returns the json decoded
dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

4.12 Get Conditions

SyncReferenceClient.get_conditions(asset_class=None, data_type=None, condition_id=None, sip=None,
order=None, limit: int = 50, sort='name', raw_response: bool =
False)

List all conditions that Polygon.io uses. Official Docs

Parameters
• asset_class – Filter for conditions within a given asset class. See polygon.enums.
AssetClass for choices. Defaults to all assets.

• data_type – Filter by data type. See polygon.enums.ConditionsDataType for choices.
defaults to all.

• condition_id – Filter for conditions with a given ID

• sip – Filter by SIP. If the condition contains a mapping for that SIP, the condition will be
returned.

• order – Order results. See polygon.enums.SortOrder for choices.

• limit – limit the number of results. defaults to 50.

• sort – Sort field used for ordering. Defaults to ‘name’. See polygon.enums.
ConditionsSortKey for choices.

50 Chapter 4. Reference APIs

https://polygon.io/docs/stocks/get_v1_marketstatus_upcoming
https://polygon.io/docs/stocks/get_v1_marketstatus_now
https://polygon.io/docs/stocks/get_v3_reference_conditions

polygon, Release 1.0.8

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

4.13 Get Exchanges

SyncReferenceClient.get_exchanges(asset_class=None, locale=None, raw_response: bool = False)
List all exchanges that Polygon.io knows about. Official Docs

Parameters
• asset_class – filter by asset class. See polygon.enums.AssetClass for choices.

• locale – Filter by locale name. See polygon.enums.Locale

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

4.13. Get Exchanges 51

https://polygon.io/docs/stocks/get_v3_reference_exchanges

polygon, Release 1.0.8

52 Chapter 4. Reference APIs

CHAPTER

FIVE

FOREX

Read this page to know everything you need to know about using the various Forex HTTP endpoints.

See Async Support for REST endpoints for asynchronous use cases.

Docs below assume you have already read getting started page and know how to create the client. If you do not know
how to create the client, first see General guide for clients & functions and create client as below. As always you can
have all 5 different clients together.

import polygon

forex_client = polygon.ForexClient('KEY') # for usual sync client
async_forex_client = polygon.ForexClient('KEY', True) # for an async client

Note that most endpoints require you to specify the currency pairs as separate symbols (a from_symbol and a
to_symbol).

however a few endpoints require you to supply them as one combined symbol. An example would be the
get_aggregates_bars method. In those methods, the symbol is expected to have a prefix C: before the currency
symbol names. but the library allows you to specify the symbol with or without the prefix. See the relevant
method’s docs for more information on what the parameters expect.

here is how the client initializer looks like:

polygon.forex.forex_api.ForexClient(api_key: str, use_async: bool = False, connect_timeout: int = 10,
read_timeout: int = 10, pool_timeout: int = 10, max_connections:
Optional[int] = None, max_keepalive: Optional[int] = None,
write_timeout: int = 10)

Initiates a Client to be used to access all REST Forex endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• use_async – Set it to True to get async client. Defaults to usual non-async client.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout if
unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

53

polygon, Release 1.0.8

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS. Do
NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults to
no limit. Do NOT change if you’re unsure of the applications.

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

Endpoints
To use any of the below method, simply call it on the client you created above. so if you named your client client,
you’d call the methods as client.get_historic_forex_ticks and so on. Async methods will need to be awaited,
see Async Support for REST endpoints.

5.1 Get Historic forex ticks

SyncForexClient.get_historic_forex_ticks(from_symbol: str, to_symbol: str, date, offset:
Optional[Union[str, int]] = None, limit: int = 500,
raw_response: bool = False)

Get historic trade ticks for a forex currency pair. Official Docs

Parameters
• from_symbol – The “from” symbol of the forex currency pair.

• to_symbol – The “to” symbol of the forex currency pair.

• date – The date/day of the historic ticks to retrieve. Could be datetime, date or string
YYYY-MM-DD

• offset – The timestamp offset, used for pagination. This is the offset at which to start the
results. Using the timestamp of the last result as the offset will give you the next page of
results. I’m thinking about a good way to implement this type of pagination in the lib which
doesn’t have a next_url in the response attributes.

• limit – Limit the size of the response, max 10000. Default 500

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

5.2 Get Quotes (NBBO)

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncForexClient.get_quotes(symbol: str, timestamp: Optional[int] = None, order=None, sort=None, limit: int
= 5000, timestamp_lt=None, timestamp_lte=None, timestamp_gt=None,
timestamp_gte=None, all_pages: bool = False, max_pages: Optional[int] =
None, merge_all_pages: bool = True, verbose: bool = False,
raw_page_responses: bool = False, raw_response: bool = False)

54 Chapter 5. Forex

https://polygon.io/docs/forex/get_v1_historic_forex__from___to___date

polygon, Release 1.0.8

Get NBBO Quotes for a forex ticker symbol in a given time range. Official Docs

Parameters
• symbol – The ticker symbol you want quotes for. eg: C:EUR-USD. you can pass with or

without prefix C:

• timestamp – Query by trade timestamp. Could be datetime or date or string YYYY-MM-DD
or a nanosecond timestamp

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to None

• sort – field key to sort against. Defaults to None. see polygon.enums.ForexQuotesSort
for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value. Can
be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

5.2. Get Quotes (NBBO) 55

https://polygon.io/docs/forex/get_v3_quotes__fxticker

polygon, Release 1.0.8

5.3 Get Last Quote

SyncForexClient.get_last_quote(from_symbol: str, to_symbol: str, raw_response: bool = False)
Get the last trade tick for a forex currency pair. Official Docs

Parameters
• from_symbol – The “from” symbol of the forex currency pair.

• to_symbol – The “to” symbol of the forex currency pair.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

5.4 Get Aggregate Bars (Candles)

The library added a better aggregate function if you’re looking to get data for large time frames at minute/hour granu-
larity.

(for example 15 years historical data , 1 minute candles)

See Better Aggregate Bars function for complete details on how to use it well and control how it behaves.

SyncForexClient.get_aggregate_bars(symbol: str, from_date, to_date, multiplier: int = 1, timespan='day',
adjusted: bool = True, sort='asc', limit: int = 5000, full_range: bool =
False, run_parallel: bool = True, max_concurrent_workers: int = 10,
warnings: bool = True, high_volatility: bool = False, raw_response:
bool = False)

Get aggregate bars for a forex pair over a given date range in custom time window sizes. For example, if
timespan = ‘minute’ and multiplier = ‘5’ then 5-minute bars will be returned. Official Docs

Parameters
• symbol – The ticker symbol of the forex pair. eg: C:EURUSD. You can supply with or without

prefix C:

• from_date – The start of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• multiplier – The size of the timespan multiplier

• timespan – The size of the time window. Defaults to day candles. see polygon.enums.
Timespan for choices

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to False to get results that are NOT adjusted for splits.

• sort – Sort the results by timestamp. see polygon.enums.SortOrder for available
choices. Defaults to asc which is oldest at the top.

56 Chapter 5. Forex

hhttps://polygon.io/docs/forex/get_v1_last_quote_currencies__from___to
https://polygon.io/docs/forex/get_v2_aggs_ticker__forexticker__range__multiplier___timespan___from___to

polygon, Release 1.0.8

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it will
run an internal ThreadPool to get the responses. This is fine to do if you are not running your
own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the async
version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to your
cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. Defaults
to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration (eg
SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t miss
any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If full_range=True, will return a single list with all the candles in it.

5.5 Get Grouped Daily Bars (Candles)

SyncForexClient.get_grouped_daily_bars(date, adjusted: bool = True, raw_response: bool = False)
Get the daily open, high, low, and close (OHLC) for the entire forex markets. Official Docs

Parameters
• date – The date for the aggregate window. Could be datetime, date or string YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

5.5. Get Grouped Daily Bars (Candles) 57

https://polygon.io/docs/forex/get_v2_aggs_grouped_locale_global_market_fx__date

polygon, Release 1.0.8

5.6 Get Previous Close

SyncForexClient.get_previous_close(symbol: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s open, high, low, and close (OHLC) for the specified forex pair. Official Docs

Parameters
• symbol – The ticker symbol of the forex pair.

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

5.7 Get Gainers & Losers

SyncForexClient.get_gainers_and_losers(direction='gainers', raw_response: bool = False)
Get the current top 20 gainers or losers of the day in forex markets. Official docs

Parameters
• direction – The direction of the snapshot results to return. See polygon.enums.
SnapshotDirection for available choices. Defaults to Gainers.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

5.8 Real Time currency conversion

SyncForexClient.real_time_currency_conversion(from_symbol: str, to_symbol: str, amount: float,
precision: int = 2, raw_response: bool = False)

Get currency conversions using the latest market conversion rates. Note than you can convert in both directions.
For example USD to CAD or CAD to USD. Official Docs

Parameters
• from_symbol – The “from” symbol of the pair.

• to_symbol – The “to” symbol of the pair.

• amount – The amount to convert,

• precision – The decimal precision of the conversion. Defaults to 2 which is 2 decimal
places accuracy.

58 Chapter 5. Forex

https://polygon.io/docs/forex/get_v2_aggs_ticker__forexticker__prev
https://polygon.io/docs/forex/get_v2_snapshot_locale_global_markets_forex__direction
https://polygon.io/docs/forex/get_v1_conversion__from___to

polygon, Release 1.0.8

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

5.8. Real Time currency conversion 59

polygon, Release 1.0.8

60 Chapter 5. Forex

CHAPTER

SIX

CRYPTO

Read this page to know everything you need to know about using the various Crypto HTTP endpoints.

See Async Support for REST endpoints for asynchronous use cases.

Docs below assume you have already read getting started page and know how to create the client. If you do not know
how to create the client, first see General guide for clients & functions and create client as below. As always you can
have all 5 different clients together.

import polygon

crypto_client = polygon.CryptoClient('KEY') # for usual sync client
async_crypto_client = polygon.CryptoClient('KEY', True) # for an async client

Note that most endpoints require you to specify the currency pairs as separate symbols (a from_symbol and a
to_symbol).

however a few endpoints require you to supply them as one combined symbol. An example would be the
get_aggregates_bars method. In those methods, the symbol is expected to have a prefix X: before the currency
symbol names. but the library allows you to specify the symbol with or without the prefix. See the relevant
method’s docs for more information on what the parameters expect.

here is how the client initializer looks like:

polygon.crypto.crypto_api.CryptoClient(api_key: str, use_async: bool = False, connect_timeout: int = 10,
read_timeout: int = 10, pool_timeout: int = 10, max_connections:
Optional[int] = None, max_keepalive: Optional[int] = None,
write_timeout: int = 10)

Initiates a Client to be used to access all REST crypto endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• use_async – Set it to True to get async client. Defaults to usual non-async client.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout if
unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

61

polygon, Release 1.0.8

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS. Do
NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults to
no limit. Do NOT change if you’re unsure of the applications.

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

Endpoints
To use any of the below method, simply call it on the client you created above. so if you named your client client,
you’d call the methods as client.get_historic_trades and so on. Async methods will need to be awaited, see
Async Support for REST endpoints.

6.1 Get Historic Trades

SyncCryptoClient.get_historic_trades(from_symbol: str, to_symbol: str, date, offset: Optional[Union[str,
int]] = None, limit: int = 500, raw_response: bool = False)

Get historic trade ticks for a cryptocurrency pair. Official Docs

Parameters
• from_symbol – The “from” symbol of the crypto pair.

• to_symbol – The “to” symbol of the crypto pair.

• date – The date/day of the historic ticks to retrieve. Could be datetime, date or string
YYYY-MM-DD

• offset – The timestamp offset, used for pagination. This is the offset at which to start the
results. Using the timestamp of the last result as the offset will give you the next page of
results. I’m trying to think of a good way to implement pagination in the library for these
endpoints which do not return a next_url attribute.

• limit – Limit the size of the response, max 10000. Default 500

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

6.2 Get Trades

This endpoint supports pagination. Passing all_pages=True enables it. See Pagination Support for better info

SyncCryptoClient.get_trades(symbol: str, timestamp: Optional[int] = None, order=None, sort=None, limit:
int = 5000, timestamp_lt=None, timestamp_lte=None, timestamp_gt=None,
timestamp_gte=None, all_pages: bool = False, max_pages: Optional[int] =
None, merge_all_pages: bool = True, verbose: bool = False,
raw_page_responses: bool = False, raw_response: bool = False)

Get trades for a crypto ticker symbol in a given time range. Official Docs

62 Chapter 6. Crypto

https://polygon.io/docs/crypto/get_v1_historic_crypto__from___to___date
https://polygon.io/docs/crypto/get_v3_trades__cryptoticker

polygon, Release 1.0.8

Parameters
• symbol – The ticker symbol you want trades for. eg X:BTC-USD. you can pass with or without

the prefix C:

• timestamp – Query by trade timestamp. Could be datetime or date or string YYYY-MM-DD
or a nanosecond timestamp

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to None

• sort – field key to sort against. Defaults to None. see polygon.enums.
CryptoTradesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value. Can
be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to False.
If set to True, it will try to paginate through all pages and merge all pages internally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data. If
False, returns a list of all pages received. The list can be either a list of response objects or
decoded data itself, controlled by parameter raw_page_responses. This argument is Only
considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding Re-
sponse objects. Else, it will be a list of actual data for pages. This parameter is only consid-
ered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If pagination is set to True, will return a merged response of all pages for convenience.

6.2. Get Trades 63

polygon, Release 1.0.8

6.3 Get Last Trade

SyncCryptoClient.get_last_trade(from_symbol: str, to_symbol: str, raw_response: bool = False)
Get the last trade tick for a cryptocurrency pair. Official Docs

Parameters
• from_symbol – The “from” symbol of the pair.

• to_symbol – The “to” symbol of the pair.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

6.4 Get Daily Open Close

SyncCryptoClient.get_daily_open_close(from_symbol: str, to_symbol: str, date, adjusted: bool = True,
raw_response: bool = False)

Get the open, close prices of a cryptocurrency symbol on a certain day. Official Docs:

Parameters
• from_symbol – The “from” symbol of the pair.

• to_symbol – The “to” symbol of the pair.

• date – The date of the requested open/close. Could be datetime, date or string
YYYY-MM-DD.

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

6.5 Get Aggregate Bars (Candles)

The library added a better aggregate function if you’re looking to get data for large time frames at minute/hour granu-
larity.

(for example 15 years historical data , 1 minute candles)

See Better Aggregate Bars function for complete details on how to use it well and control how it behaves.

64 Chapter 6. Crypto

https://polygon.io/docs/crypto/get_v1_last_crypto__from___to
https://polygon.io/docs/crypto/get_v1_open-close_crypto__from___to___date

polygon, Release 1.0.8

SyncCryptoClient.get_aggregate_bars(symbol: str, from_date, to_date, multiplier: int = 1, timespan='day',
adjusted: bool = True, sort='asc', limit: int = 5000, full_range: bool
= False, run_parallel: bool = True, max_concurrent_workers: int =
10, warnings: bool = True, high_volatility: bool = False,
raw_response: bool = False)

Get aggregate bars for a cryptocurrency pair over a given date range in custom time window sizes. For example,
if timespan=‘minute’ and multiplier=‘5’ then 5-minute bars will be returned. Official Docs

Parameters
• symbol – The ticker symbol of the currency pair. eg: X:BTCUSD. You can specify with or

without prefix X:

• from_date – The start of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• multiplier – The size of the timespan multiplier

• timespan – The size of the time window. Defaults to day candles. see polygon.enums.
Timespan for choices

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to False to get results that are NOT adjusted for splits.

• sort – Order of sorting the results. See polygon.enums.SortOrder for available choices.
Defaults to asc (oldest at the top)

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it will
run an internal ThreadPool to get the responses. This is fine to do if you are not running your
own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the async
version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to your
cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. Defaults
to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration (eg
SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t miss
any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object. If full_range=True, will return a single list with all the candles in it.

6.5. Get Aggregate Bars (Candles) 65

https://polygon.io/docs/crypto/get_v2_aggs_ticker__cryptoticker__range__multiplier___timespan___from___to

polygon, Release 1.0.8

6.6 Get Grouped Daily Bars (Candles)

SyncCryptoClient.get_grouped_daily_bars(date, adjusted: bool = True, raw_response: bool = False)
Get the daily open, high, low, and close (OHLC) for the entire cryptocurrency market. Official Docs

Parameters
• date – The date for the aggregate window. Could be datetime, date or string YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

6.7 Get Previous Close

SyncCryptoClient.get_previous_close(symbol: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s open, high, low, and close (OHLC) for the specified cryptocurrency pair. Official Docs

Parameters
• symbol – The ticker symbol of the currency pair. eg: X:BTCUSD. You can specify with or

without the prefix X:

• adjusted – Whether or not the results are adjusted for splits. By default, results are adjusted.
Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

6.8 Get Snapshot All

SyncCryptoClient.get_snapshot_all(symbols: list, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for all traded
cryptocurrency symbols Official Docs

Parameters
• symbols – A list of tickers to get snapshots for.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

66 Chapter 6. Crypto

https://polygon.io/docs/crypto/get_v2_aggs_grouped_locale_global_market_crypto__date
https://polygon.io/docs/crypto/get_v2_aggs_ticker__cryptoticker__prev
hhttps://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers

polygon, Release 1.0.8

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

6.9 Get Snapshot

SyncCryptoClient.get_snapshot(symbol: str, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for a single traded
cryptocurrency symbol. Official Docs

Parameters
• symbol – Symbol of the currency pair. eg: X:BTCUSD. you can specify with or without

prefix X:

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

6.10 Get Gainers and Losers

SyncCryptoClient.get_gainers_and_losers(direction='gainers', raw_response: bool = False)
Get the current top 20 gainers or losers of the day in cryptocurrency markets. Official docs

Parameters
• direction – The direction of the snapshot results to return. See polygon.enums.
SnapshotDirection for available choices. Defaults to Gainers.

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

6.11 Get Level 2 Book

SyncCryptoClient.get_level2_book(symbol: str, raw_response: bool = False)
Get the current level 2 book of a single ticker. This is the combined book from all of the exchanges. Official
Docs

Parameters
• symbol – The cryptocurrency ticker. eg: X:BTCUSD. You can specify with or without the

prefix `X:

6.9. Get Snapshot 67

https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers__ticker
https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto__direction
https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers__ticker__book
https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers__ticker__book

polygon, Release 1.0.8

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying response
object

68 Chapter 6. Crypto

CHAPTER

SEVEN

CALLBACK STREAMING

A convenient wrapper around the Streaming API

IMPORTANT Polygon.io allows one simultaneous connection to one cluster at a time (clusters: stocks, options, forex,
crypto). which means 4 total concurrent streams (Of course you need to have subscriptions for them).

Connecting to a cluster which already has an existing stream connected to it would result in existing connection
getting dropped and new connection would be established
Note that This page describes the callback based streaming client. If you’re looking for async based streaming client,
See Async Streaming

Also note that callback based streamer is supposed to get a builtin functionality to reconnect in the library. Async
streamer has it already. It’s on TODO for this client. Have a reconnect mechanism to share? Share in discussions or
on the wiki.

7.1 Creating the client

Creating a client is just creating an instance of polygon.StreamClient. Note that this expects a few arguments where
most of them have default values.

This is how the initializer looks like:

StreamClient.__init__(api_key: str, cluster, host='socket.polygon.io', on_message=None, on_close=None,
on_error=None, enable_connection_logs: bool = False)

Initializes the callback function based stream client Official Docs

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• cluster – Which market/cluster to connect to. See polygon.enums.StreamCluster for
choices. NEVER connect to the same cluster again if there is an existing stream connected
to it. The existing connection would be dropped and new one will be established. You can
have up to 4 concurrent streams connected to 4 different clusters.

• host – Host url to connect to. Default is real time. See polygon.enums.StreamHost for
choices.

• on_message – The function to be called when data is received. This is primary function
you’ll write to process the data from the stream. The function should accept one and only
one arg (message). Default handler is _default_on_msg().

• on_close – The function to be called when stream is closed. Function should accept two
args (close_status_code, close_message). Default handler is _default_on_close()

69

https://polygon.io/docs/websockets/getting-started
https://github.com/pssolanki111/polygon/discussions
https://github.com/pssolanki111/polygon/wiki
https://polygon.io/docs/websockets/getting-started

polygon, Release 1.0.8

• on_error – Function to be called when an error is encountered. Function should accept one
arg (exception object). Default handler is _default_on_error()

• enable_connection_logs – Whether or not to print debug info related to the stream con-
nection. Helpful for debugging.

Example use:

import polygon

stream_client = polygon.StreamClient('KEY', 'stocks', on_message=my_own_handler_
→˓function) # in the simplest form

Note that you don’t have to call login methods as the library does it internally itself.

7.2 Starting the Stream

Once you have a stream client, you can start the stream thread by calling the method: start_stream_thread.

This method has default values which should be good enough for most people. For those who need customization, here
is how it looks like:

StreamClient.start_stream_thread(ping_interval: int = 21, ping_timeout: int = 20, ping_payload: str = '',
skip_utf8_validation: bool = True)

Starts the Stream. This will not block the main thread and it spawns the streamer in its own thread.

Parameters
• ping_interval – client would send a ping every specified number of seconds to server to

keep connection alive. Set to 0 to disable pinging. Defaults to 21 seconds

• ping_timeout – Timeout in seconds if a pong (response to ping from server) is not received.
The Stream is terminated as it is considered to be dead if no pong is received within the
specified timeout. default: 20 seconds

• ping_payload – The option message to be sent with the ping. Better to leave it empty
string.

• skip_utf8_validation – Whether to skip utf validation of messages. Defaults to True.
Setting it to False may result in performance downgrade

Returns
None

Example use:

import polygon

stream_client = polygon.StreamClient('KEY', 'stocks', on_message=my_own_handler_function)

stream_client.start_stream_thread()

subscriptions here.

70 Chapter 7. Callback Streaming

https://websocket-client.readthedocs.io/en/latest/faq.html#why-is-this-library-slow

polygon, Release 1.0.8

7.3 Important Concepts

Important stuff to know before you connect your first stream. Note that when writing applications, you should create
the client and start the stream thread before subscribing.

7.3.1 Subscribing/Unsubscribing to Streams

All subscription methods have names in pattern subscribe_service_name and unsubscribe_service_name
(listed below)

Symbols names must be specified as a list of symbols: ['AMD', 'NVDA', 'LOL'] is the correct way to specify
symbols. Not specifying a list of symbols results in the action being applied to ALL tickers in that service. Note that
either of [], None, ['*'] or 'all' as value of symbols would also results in ALL tickers.

The library allows specifying a string for symbol argument (that string is sent exactly as it is without processing), but
only do that if you have the absolute need to. Most people should just specify a list. Note that a list of single ticker is
accepted.

Options and Crypto stream endpoints expect prefixes ``O:, X:`` respectively in front of every ticker. The library
handles this for you so you can pass symbols with or without those prefixes.

By default, the library will also enforce upper case for all symbols being passed. To disable this enforcement, just pass
in force_uppercase_symbols=False when subscribing in the methods below.

7.3.2 Handling messages

Your handler function should accept two arguments. You can ignore the first argument which is going to be the web-
socket instance itself. The second argument is the actual message.

In callback streaming, the library can’t do the json decoding for you internally, and you will always receive a raw
string as received from the websocket server. messages). You will have to do json decoding yourself.

def sample_handler(ws, msg):
print(msg) # here msg is the raw string which contains the msg. to convert it to a␣

→˓list/dict, it needs to be decoded.

DECODING the msg from string to list/dict
ensure you have 'import json' at the top of file in imports

msg = json.loads(msg) # now msg is a python object which you can use easily to␣
→˓access data from.

Once you have the message in your callback handler function, you can process it the way you want. print it out, write
it to a file, push it to a redis queue, write to a database, offload to a multi-threaded queue. Just whatever.

The default handler for the messages is _default_on_msg which does some checks on messages having event as
status. and prints out other messages. Messages from polygon having the key ev equal to status are status updates
from polygon about login and relevant actions you take (ev indicates event)

The data messages will have different ev value than the string ‘status’. The ev values for those would match the
polygon.enums.StreamServicePrefix values.

You can specify your own handlers for other callbacks (on_error, on_close etc) too or leave those to defaults.

if you choose to override default handlers for on_error and on_close, here is how they need to be written

7.3. Important Concepts 71

polygon, Release 1.0.8

on_error handler must accept two arguments. You can ignore the first argument which is just the websocket instance
itself. The second argument is going to be the actual error

def sample_error_handler(ws, error):
print(error)

on_close handler must accept three arguments. you can ignore the first arg which is just the websocket instance itself.
The second arg is close code, and third would be the close message. note that this handler is only called when the
stream is being closed.

def sample_close_handler(ws, close_code, close_msg):
print(f'Stream close with code: {close_code} || msg: {close_msg}')

7.3.3 Closing Stream

To turn off the streamer and shut down the websockets connection gracefully, it is advised to call stream_client.
close_stream() method when closing the application. Not an absolute necessity but a good software practice.

Streams

7.4 Stocks Streams

7.4.1 Stock Trades

StreamClient.subscribe_stock_trades(symbols: Optional[list] = None, force_uppercase_symbols: bool =
True)

Stream real-time trades for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_stock_trades(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

7.4.2 Stock Quotes

StreamClient.subscribe_stock_quotes(symbols: Optional[list] = None, force_uppercase_symbols: bool =
True)

Stream real-time Quotes for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

72 Chapter 7. Callback Streaming

polygon, Release 1.0.8

Returns
None

StreamClient.unsubscribe_stock_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

7.4.3 Stock Minute Aggregates (OCHLV)

StreamClient.subscribe_stock_minute_aggregates(symbols: Optional[list] = None,
force_uppercase_symbols: bool = True)

Stream real-time minute aggregates for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_stock_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

7.4.4 Stock Second Aggregates (OCHLV)

StreamClient.subscribe_stock_second_aggregates(symbols: Optional[list] = None,
force_uppercase_symbols: bool = True)

Stream real-time second aggregates for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_stock_second_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

7.4.5 Stock Limit Up Limit Down (LULD)

StreamClient.subscribe_stock_limit_up_limit_down(symbols: Optional[list] = None,
force_uppercase_symbols: bool = True)

Stream real-time LULD events for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

7.4. Stocks Streams 73

polygon, Release 1.0.8

Returns
None

StreamClient.unsubscribe_stock_limit_up_limit_down(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

7.4.6 Stock Imbalances

StreamClient.subscribe_stock_imbalances(symbols: Optional[list] = None, force_uppercase_symbols: bool
= True)

Stream real-time Imbalance Events for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_stock_imbalances(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

7.5 Options Streams

7.5.1 Options Trades

StreamClient.subscribe_option_trades(symbols: Optional[list] = None, force_uppercase_symbols: bool =
True)

Stream real-time Options Trades for given Options contract.

Parameters
• symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market.

you can pass with or without the prefix O:

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_option_trades(symbols: Optional[list] = None)
Unsubscribe real-time Options Trades for given Options contract.

Parameters
symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market. you
can pass with or without the prefix O:

Returns
None

74 Chapter 7. Callback Streaming

polygon, Release 1.0.8

7.5.2 Options Quotes

StreamClient.subscribe_option_quotes(symbols: Optional[list] = None, force_uppercase_symbols: bool =
True)

Stream real-time Options Quotes for given Options contract.

Parameters
• symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market.

you can pass with or without the prefix O:

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_option_quotes(symbols: Optional[list] = None)
Unsubscribe real-time Options Quotes for given Options contract.

Parameters
symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market. you
can pass with or without the prefix O:

Returns
None

7.5.3 Options Minute Aggregates (OCHLV)

StreamClient.subscribe_option_minute_aggregates(symbols: Optional[list] = None,
force_uppercase_symbols: bool = True)

Stream real-time Options Minute Aggregates for given Options contract(s).

Parameters
• symbols – A list of symbols. Default is * which subscribes to ALL tickers in the market.

you can pass with or without the prefix O:

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_option_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe real-time Options Minute aggregates for given Options contract.

Parameters
symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market. you
can pass with or without the prefix O:

Returns
None

7.5. Options Streams 75

polygon, Release 1.0.8

7.5.4 Options Second Aggregates (OCHLV)

StreamClient.subscribe_option_second_aggregates(symbols: Optional[list] = None,
force_uppercase_symbols: bool = True)

Stream real-time Options Second Aggregates for given Options contract(s).

Parameters
• symbols – A list of symbols. Default is * which subscribes to ALL tickers in the market.

you can pass with or without the prefix O:

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_option_second_aggregates(symbols: Optional[list] = None)
Unsubscribe real-time Options Second Aggregates for given Options contract.

Parameters
symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market. you
can pass with or without the prefix O:

Returns
None

7.6 Forex Streams

7.6.1 Forex Quotes

StreamClient.subscribe_forex_quotes(symbols: Optional[list] = None, force_uppercase_symbols: bool =
True)

Stream real-time forex quotes for given forex pair(s).

Parameters
• symbols – A list of forex tickers. Default is * which subscribes to ALL tickers in the market.

each Ticker must be in format: from/to. For example: USD/CNH.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_forex_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

Parameters
symbols – A list of forex tickers. Default is * which unsubscribes to ALL tickers in the market.
each Ticker must be in format: from/to. For example: USD/CNH.

76 Chapter 7. Callback Streaming

polygon, Release 1.0.8

7.6.2 Forex Minute Aggregates (OCHLV)

StreamClient.subscribe_forex_minute_aggregates(symbols: Optional[list] = None,
force_uppercase_symbols: bool = True)

Stream real-time forex Minute Aggregates for given forex pair(s).

Parameters
• symbols – A list of forex tickers. Default is * which subscribes to ALL tickers in the market.

each Ticker must be in format: from/to. For example: USD/CNH.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_forex_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

Parameters
symbols – A list of forex tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from/to. For example: USD/CNH.

7.7 Crypto Streams

7.7.1 Crypto Trades

StreamClient.subscribe_crypto_trades(symbols: Optional[list] = None, force_uppercase_symbols: bool =
True)

Stream real-time Trades for given cryptocurrency pair(s).

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_crypto_trades(symbols: Optional[list] = None)
Unsubscribe real-time trades for given cryptocurrency pair(s).

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with or
without the prefix X:

Returns
None

7.7. Crypto Streams 77

polygon, Release 1.0.8

7.7.2 Crypto Quotes

StreamClient.subscribe_crypto_quotes(symbols: Optional[list] = None, force_uppercase_symbols: bool =
True)

Stream real-time Quotes for given cryptocurrency pair(s).

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_crypto_quotes(symbols: Optional[list] = None)
Unsubscribe real-time quotes for given cryptocurrency pair(s).

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with or
without the prefix X:

Returns
None

7.7.3 Crypto Minute Aggregates (OCHLV)

StreamClient.subscribe_crypto_minute_aggregates(symbols: Optional[list] = None,
force_uppercase_symbols: bool = True)

Stream real-time Minute Aggregates for given cryptocurrency pair(s).

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_crypto_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe real-time minute aggregates for given cryptocurrency pair(s).

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with or
without the prefix X:

Returns
None

78 Chapter 7. Callback Streaming

polygon, Release 1.0.8

7.7.4 Crypto Level 2 Book

StreamClient.subscribe_crypto_level2_book(symbols: Optional[list] = None, force_uppercase_symbols:
bool = True)

Stream real-time level 2 book data for given cryptocurrency pair(s).

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

StreamClient.unsubscribe_crypto_level2_book(symbols: Optional[list] = None)
Unsubscribe real-time level 2 book data for given cryptocurrency pair(s).

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with or
without the prefix X:

Returns
None

7.7. Crypto Streams 79

polygon, Release 1.0.8

80 Chapter 7. Callback Streaming

CHAPTER

EIGHT

ASYNC STREAMING

A convenient wrapper around the Streaming API

IMPORTANT Polygon.io allows one simultaneous connection to one cluster at a time (clusters: stocks, options, forex,
crypto). which means 4 total concurrent streams (Of course you need to have subscriptions for them).

Connecting to a cluster which already has an existing stream connected to it would result in existing connection
getting dropped and new connection would be established
Note that This page describes the asyncio based streaming client. If you’re looking for callback based streaming client,
See Callback Streaming

Also note that async client has a reconnection mechanism built into it already. It is very basic at the moment. It resub-
scribes to the same set of services it already had before the disconnection and restores the handlers when reconnection
establishes. More info in starting the stream below.

It also exposes a few methods which you could use to create your own reconnect mechanism. Method polygon.
streaming.async_streaming.AsyncStreamClient.reconnect() is one of them

Have a reconnect mechanism to share? Share in discussions or on the wiki.

8.1 Creating the client

Creating a client is just creating an instance of polygon.AsyncStreamClient. Note that this expects a few arguments
where most of them have default values.

This is how the initializer looks like:

AsyncStreamClient.__init__(api_key: str, cluster, host='socket.polygon.io', ping_interval: Optional[int] = 20,
ping_timeout: Optional[int] = 19, max_message_size: int = 1048576,
max_memory_queue: Optional[int] = 32, read_limit: int = 65536, write_limit:
int = 65536)

Initializes the stream client for async streaming Official Docs

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• cluster – Which market/cluster to connect to. See polygon.enums.StreamCluster for
choices. NEVER connect to the same cluster again if there is an existing stream connected
to it. The existing connection would be dropped and new one will be established. You can
have up to 4 concurrent streams connected to 4 different clusters.

• host – Host url to connect to. Default is real time. See polygon.enums.StreamHost for
choices

81

https://polygon.io/docs/websockets/getting-started
https://github.com/pssolanki111/polygon/discussions
https://github.com/pssolanki111/polygon/wiki
https://polygon.io/docs/websockets/getting-started

polygon, Release 1.0.8

• ping_interval – Send a ping to server every specified number of seconds to keep the
connection alive. Defaults to 20 seconds. Setting to 0 disables pinging.

• ping_timeout – The number of seconds to wait after sending a ping for the response (pong).
If no response is received from the server in those many seconds, stream is considered dead
and exits with code 1011. Defaults to 19 seconds.

• max_message_size – The max_size parameter enforces the maximum size for incoming
messages in bytes. The default value is 1 MiB (not MB). None disables the limit. If a message
larger than the maximum size is received, recv() will raise ConnectionClosedError and
the connection will be closed with code 1009

• max_memory_queue – sets the maximum length of the queue that holds incoming messages.
The default value is 32. None disables the limit. Messages are added to an in-memory queue
when they’re received; then recv() pops from that queue

• read_limit – sets the high-water limit of the buffer for incoming bytes. The low-water limit
is half the high-water limit. The default value is 64 KiB, half of asyncio’s default. Don’t
change if you are unsure of what it implies.

• write_limit – The write_limit argument sets the high-water limit of the buffer for outgoing
bytes. The low-water limit is a quarter of the high-water limit. The default value is 64 KiB,
equal to asyncio’s default. Don’t change if you’re unsure what it implies.

Example use:

import polygon

stream_client = polygon.AsyncStreamClient('KEY', 'stocks') # in the simplest form

Note that you don’t have to call login methods as the library does it internally itself.

8.2 Starting the Stream

Once you have a stream client, you MUST subscribe to streams before you start the main stream loop. Note that you
can alter your subscriptions from other coroutines easily even after starting the main stream loop. See subscriptions
methods below this section to know how to subscribe to streams.

AFTER you have called your initial subscription methods, you have two ways to start the main stream loop.

8.2.1 Without using the built-in reconnect functionality

In this case you’d need to have your own while loop, like so:

assuming we create the client and sub to stream here already.
while 1:

await stream_client.handle_messages()

and that’s basically it. handle_message would take care of receiving messages and calling appropriate handlers (see
below section for info on that aspect). You may want to implement your own reconnect mechanism here.

If that’s your use case, you can basically ignore the below section completely.

82 Chapter 8. Async Streaming

polygon, Release 1.0.8

8.2.2 Using the built-in reconnect functionality

here you don’t need any outer while loop of your own. The lib has inner while loops and mechanisms to trap discon-
nection errors and will attempt to reconnect.

Note that this function is basic and not perfect yet and will continue to improve as we move ahead. If you figure out a
way to implement reconnection, feel free to share that in discussions or on the wiki.

simple use example

assuming we already have a client subscribed to streams
await stream_client.handle_messages(reconnect=True)

That’s it. This should be enough for most users. For those who need more control over the behavior here; this is how
the method definition looks like:

async AsyncStreamClient.handle_messages(reconnect: bool = False, max_reconnection_attempts=5,
reconnection_delay=5)

The primary method to start the stream. Connects & Logs in by itself. Allows Reconnecting by simply altering
a parameter (subscriptions are persisted across reconnected streams)

Parameters
• reconnect – If this is False (default), it simply awaits the next message and calls the appro-

priate handler. Uses the _default_process_message() if no handler was specified. You
should use the statement inside a while loop in that case. Setting it to True creates an inner
loop which traps disconnection errors except login failed due to invalid Key, and reconnects
to the stream with the same subscriptions it had earlier before getting disconnected.

• max_reconnection_attempts – Determines how many times should the program attempt
to reconnect in case of failed attempts. The Counter is reset as soon as a successful con-
nection is re-established. Setting it to False disables the limit which is NOT recommended
unless you know you got a situation. This value is ignored if reconnect is False (The de-
fault). Defaults to 5.

• reconnection_delay – Number of seconds to wait before attempting to reconnect after a
failed reconnection attempt or a disconnection. This value is ignored if reconnect is False
(the default). Defaults to 5.

Returns
None

8.3 Subscribing/Unsubscribing to Streams

All subscription methods have names in pattern subscribe_service_name and unsubscribe_service_name.

Symbols names must be specified as a list of symbols: ['AMD', 'NVDA', 'LOL'] is the correct way to specify
symbols. Not specifying a list of symbols results in the action being applied to ALL tickers in that service. Note that
either of [], None, ['*'] or 'all' as value of symbols would also results in ALL tickers.

The library allows specifying a string for symbol argument (that string is sent exactly as it is without processing), but
only do that if you have the absolute need to. Most people should just specify a list. Note that a list of single ticker is
accepted.

Options and Crypto stream endpoints expect prefixes ``O:, X:`` respectively in front of every ticker. The library
handles this for you so you can pass symbols with or without those prefixes.

8.3. Subscribing/Unsubscribing to Streams 83

https://github.com/pssolanki111/polygon/discussions
https://github.com/pssolanki111/polygon/wiki

polygon, Release 1.0.8

The Second argument on all unsubscribe methods is the handler_function which represents the handler function
you’d like the library to call when a message from that service is received. You can have one handler for multiple
services. Not supplying a handler results in the library using the default message handler.

All methods are async coroutines which need to be awaited.

await stream_client.subscribe_stock_trades(['AMD', 'NVDA'], handler_function=my_handler_function)

By default, the library will also enforce upper case for all symbols being passed. To disable this enforcement, just pass
in force_uppercase_symbols=False when subscribing in the methods below.

8.4 Handling Messages

your handler functions should accept one argument which indicates the message.

async def sample_handler(msg):
print(f'Look at me! I am the handler now. {msg}')

Note that you can also use a sync function as handler

def sample_handler(msg):
print(f'I am also a handler. But sync.. {msg}')

In async streaming, the library does the json decoding for you internally, and you will always receive a list/dict
python object (a list 99.99% of the time except the initial status messages). You don’t have to do json decoding
yourself. Internally it is already done using json.loads(msg)

Once you have the message in your callback handler function, you can process it the way you want. print it out, write
it to a file, push it to a redis queue, write to a database, offload to a multi-threaded queue. Just whatever.

The default handler for the messages is _default_process_message.

8.5 Changing message handler functions while stream is running

Library allows you to change your handlers after your main stream loop has started running.

The function you’d need is:

async AsyncStreamClient.change_handler(service_prefix, handler_function)
Change your handler function for a service. Can be used to update handlers dynamically while stream is running.

Parameters
• service_prefix – The Prefix of the service you want to change handler for. see polygon.
enums.StreamServicePrefix for choices.

• handler_function – The new handler function to assign for this service

Returns
None

Note that you should never need to change handler for status (which handles ev messages) unless you know you got
a situation. Service prefixes just indicate which service (eg stock trades? options aggregates?) you want to change the
handler.

84 Chapter 8. Async Streaming

polygon, Release 1.0.8

8.6 Closing the Stream

To turn off the streamer and shut down the websockets connection gracefully, it is advised to await stream_client.
close_stream() when closing the application. Not an absolute necessity but a good software practice.

Streams

8.7 Stock Streams

8.7.1 Stock Trades

async AsyncStreamClient.subscribe_stock_trades(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols:
bool = True)

Get Real time trades for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL tickers.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_stock_trades(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

8.7.2 Stock Quotes

async AsyncStreamClient.subscribe_stock_quotes(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols:
bool = True)

Get Real time quotes for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL tickers.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

8.6. Closing the Stream 85

polygon, Release 1.0.8

Returns
None

async AsyncStreamClient.unsubscribe_stock_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

8.7.3 Stock Minute Aggregates (OCHLV)

async AsyncStreamClient.subscribe_stock_minute_aggregates(symbols: Optional[list] = None,
handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Minute Aggregates for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_stock_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

8.7.4 Stock Second Aggregates (OCHLV)

async AsyncStreamClient.subscribe_stock_second_aggregates(symbols: Optional[list] = None,
handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Seconds Aggregates for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

86 Chapter 8. Async Streaming

polygon, Release 1.0.8

Returns
None

async AsyncStreamClient.unsubscribe_stock_second_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

8.7.5 Stock Limit Up Limit Down (LULD)

async AsyncStreamClient.subscribe_stock_limit_up_limit_down(symbols: Optional[list] = None,
handler_function=None,
force_uppercase_symbols: bool =
True)

Get Real time LULD Events for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_stock_limit_up_limit_down(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

8.7.6 Stock Imbalances

async AsyncStreamClient.subscribe_stock_imbalances(symbols: Optional[list] = None,
handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Imbalance Events for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

8.7. Stock Streams 87

polygon, Release 1.0.8

Returns
None

async AsyncStreamClient.unsubscribe_stock_imbalances(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

8.8 Options Streams

8.8.1 Options Trades

async AsyncStreamClient.subscribe_option_trades(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols:
bool = True)

Get Real time options trades for provided ticker(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker. You can specify with or

without the prefix O:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_option_trades(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied option symbols.

Parameters
symbols – A list of symbols to unsubscribe from. Defaults to ALL tickers. You can specify with
or without the prefix O:

Returns
None

8.8.2 Options Quotes

async AsyncStreamClient.subscribe_option_quotes(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols:
bool = True)

Get Real time options quotes for provided ticker(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker. You can specify with or

without the prefix O:

88 Chapter 8. Async Streaming

polygon, Release 1.0.8

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_option_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied option symbols.

Parameters
symbols – A list of symbols to unsubscribe from. Defaults to ALL tickers. You can specify with
or without the prefix O:

Returns
None

8.8.3 Options Minute Aggregates (OCHLV)

async AsyncStreamClient.subscribe_option_minute_aggregates(symbols: Optional[list] = None,
handler_function=None,
force_uppercase_symbols: bool =
True)

Get Real time options minute aggregates for given ticker(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker. You can specify with or

without the prefix O:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_option_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied option symbols.

Parameters
symbols – A list of symbols to unsubscribe from. Defaults to ALL tickers. You can specify with
or without the prefix O:

Returns
None

8.8. Options Streams 89

polygon, Release 1.0.8

8.8.4 Options Second Aggregates (OCHLV)

async AsyncStreamClient.subscribe_option_second_aggregates(symbols: Optional[list] = None,
handler_function=None,
force_uppercase_symbols: bool =
True)

Get Real time options second aggregates for given ticker(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker. You can specify with or

without the prefix O:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_option_second_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied option symbols.

Parameters
symbols – A list of symbols to unsubscribe from. Defaults to ALL tickers. You can specify with
or without the prefix O:

Returns
None

8.9 Forex Streams

8.9.1 Forex Quotes

async AsyncStreamClient.subscribe_forex_quotes(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols:
bool = True)

Get Real time Forex Quotes for provided symbol(s)

Parameters
• symbols – A list of forex tickers. Default is * which subscribes to ALL tickers in the market.

each Ticker must be in format: from/to. For example: USD/CNH.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_forex_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied forex symbols.

90 Chapter 8. Async Streaming

polygon, Release 1.0.8

Parameters
symbols – A list of forex tickers. Default is * which unsubscribes to ALL tickers in the market.
each Ticker must be in format: from/to. For example: USD/CNH.

Returns
None

8.9.2 Forex Minute Aggregates (OCHLV)

async AsyncStreamClient.subscribe_forex_minute_aggregates(symbols: Optional[list] = None,
handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Forex Minute Aggregates for provided symbol(s)

Parameters
• symbols – A list of forex tickers. Default is * which subscribes to ALL tickers in the market.

each Ticker must be in format: from/to. For example: USD/CNH

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_forex_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied forex symbols.

Parameters
symbols – A list of forex tickers. Default is * which unsubscribes to ALL tickers in the market.
each Ticker must be in format: from/to. For example: USD/CNH.

Returns
None

8.10 Crypto Streams

8.10.1 Crypto Trades

async AsyncStreamClient.subscribe_crypto_trades(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols:
bool = True)

Get Real time Crypto Trades for provided symbol(s)

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

8.10. Crypto Streams 91

polygon, Release 1.0.8

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_crypto_trades(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied crypto symbols.

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with or
without the prefix X:

Returns
None

8.10.2 Crypto Quotes

async AsyncStreamClient.subscribe_crypto_quotes(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols:
bool = True)

Get Real time Crypto Quotes for provided symbol(s)

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_crypto_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied crypto symbols.

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with or
without the prefix X:

Returns
None

92 Chapter 8. Async Streaming

polygon, Release 1.0.8

8.10.3 Crypto Minute Aggregates (OCHLV)

async AsyncStreamClient.subscribe_crypto_minute_aggregates(symbols: Optional[list] = None,
handler_function=None,
force_uppercase_symbols: bool =
True)

Get Real time Crypto Minute Aggregates for provided symbol(s)

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_crypto_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied crypto symbols.

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with or
without the prefix X:

Returns
None

8.10.4 Crypto Level 2 Book

async AsyncStreamClient.subscribe_crypto_level2_book(symbols: Optional[list] = None,
handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Crypto Level 2 Book Data for provided symbol(s)

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all sym-
bols upper case

Returns
None

async AsyncStreamClient.unsubscribe_crypto_level2_book(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied crypto symbols.

8.10. Crypto Streams 93

polygon, Release 1.0.8

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with or
without the prefix X:

Returns
None

94 Chapter 8. Async Streaming

CHAPTER

NINE

WHAT THE HELL ARE ENUMS ANYWAYS

Sooooo. . . you’ve had enough of these enums and finally decided to know what the hell they actually are and why you
should care about them.

Well read this page to get your answers.

You should have seen them on many methods’ documentation as argument choices.

First up, does everyone need them? that depends on their use case. enums in this library are only used on some
endpoints, especially the ones in reference APIs and some basic uses in stream clients. So if someone only needs to
ochlv chart data, they probably won’t need to use enums.

If you notice any value which is supported by the API but not included in the enums, Let me Know using dis-
cussions

9.1 What are they

Simplest non technical terms definition
They are a way to define pseudo constants (read constants) in python (python doesn’t have anything as constants.
That’s why enums are precious :D). They have many use cases other than constants but for this library you only
need to know this far.

For example
consider the enum polygon.enums.AssetClass which has 4 values inside of it. The values are just class
attribute and you can access them just like you’d access any other class attribute. print(polygon.enums.
AssetClass.STOCKS) would print the string stocks. so in another words this enum class has 4 mem-
ber enums which can be used to specify the value wherever needed. Like this some_function(arg1,
asset=AssetClass.STOCKS).

when you pass in an enum to a function or a method, it is equal to passing in the value of that enum.

so instead of some_function(arg1, asset=AssetClass.STOCKS) i could have said some_function(arg1,
asset='stocks') and both mean the same thing.

Here are All the enums of this library in one place

95

https://polygon.readthedocs.io/en/latest/Library-Interface-Documentation.html#module-polygon.enums

polygon, Release 1.0.8

9.2 Then why not just pass in raw values? Why do we need enums?

I mean you could do that. In fact many people would still do that despite the notes here (I’ll be watching you all :/).

but think about it this way, can you have enums for a parameter which expects a person’s name? Of course not. Because
there isn’t any constant value (or a fixed set of values) to choose from.

but can i have enums for TickerTypes? Yes. Because it has a set of fixed values and the API would not return the correct
data if the value passed in is different than the ones which are in the fixed set.

Using enums
• Avoids passing in incorrect values.

• Avoids typing mistakes while passing in parameter values (I’m looking at you
TRAILING_TWELVE_MONTHS_ANNUALIZED)

• gives you a fixed set of values to choose from and you don’t have to hit and trial to know supported values.

• And finally, IDE autocomplete would make your life even easier while writing code that makes use of enums

Finally, it’s not an absolute necessity to use enums but they are very much recommended.

9.3 Okay how do I use them

To start off, like any other name, you’d need to import the names. Now there are many ways to do that and it’s up to
your coding preferences. Make use of your IDE auto-completions to make it easier to fill in enums.

Some common ways are

9.3.1 Approach 1 - importing all enums at once

import polygon # which you already do for using other clients so nothing new to import␣
→˓here

now you can use enums as

client.some_function(other_args, arg=polygon.enums.TickerType.ADRC)

OR
import polygon.enums as enums

client.some_function(other_args, arg=enums.TickerType.ETF)

as you see this allows you to access all enums without having to import each one individually. But this also mean you’d
be typing longer names (not big of an issue considering IDE completions).

Note that importing all enums doesn’t have any resource overhead so don’t worry about enums eating your RAM.

96 Chapter 9. What the Hell are Enums Anyways

https://polygon.readthedocs.io/en/latest/Library-Interface-Documentation.html#module-polygon.enums

polygon, Release 1.0.8

9.3.2 Approach 2 - importing just the enums you need

This approach is nicer for cases when you only specifically need a few enums.

from polygon.enums import TickerType

using it as
client.some_function(other_args, arg=TickerType.CS)

OR
from polygon.enums import (TickerType, AssetClass)

client.some_function(other_args, arg=TickerType.CS)

client.some_other_function(other_args, arg=TickerType.CS, other_arg=AssetClass.STOCKS)

9.3.3 Other Approaches

You could use any other import syntax if you like. such as from polygon.enums import * but I wouldn’t recom-
mend wild card imports.

9.3. Okay how do I use them 97

https://stackoverflow.com/questions/3615125/should-wildcard-import-be-avoided
https://stackoverflow.com/questions/3615125/should-wildcard-import-be-avoided
https://realpython.com/lessons/importing-asterisk-from-package/

polygon, Release 1.0.8

98 Chapter 9. What the Hell are Enums Anyways

CHAPTER

TEN

GETTING HELP

Generally, feel free to join our Discord Server for help/discussions.

If you’re stuck at something. don’t worry, everyone does. Need a hand? Here is how you can get help.

• See if you can find the relevant info in FAQs or Community Wikis

• See if there is an Open Issue or a Pull Request related to your concern already.

• See if your issue has been discussed already in one of the Discussions

• If you believe the issue could be on polygon.io end, get in touch with their support team. They’re quite helpful.
There is a button in bottom right corner of every documentation page

Once you have gone through these and haven’t found your answer, you can
• Join our Discord Server and ask your question/discuss or chat with people.

• Start a Discussion. You can ask your questions in general channel or create a QnA discussion from left.

If your question is more of a bug report, you can raise a new issue or feature request with adequate information.

Remember that Issues is not a good place to ask for general help.

Always make sure to provide enough information when asking for help. This includes but not limited to

• Your Operating system (Ubuntu? Arch? Windows?)

• Your execution environment (Pycharm? VSC? A usual terminal? a cloud instance? a rasp pi?)

• Your python version and polygon version. always ensure you are on the latest version of the library. You can
update if you’re not using command pip install --upgrade polygon

• The full stack traceback and error message if any. Do not attempt to describe error messages in your own
languages. Sometimes error messages don’t mean what they say

• The source code which causes the error. If your code is supposed to be secret, write a sample script which
can reproduce the issue. Always make sure to remove sensitive info from logs/code

99

https://discord.gg/jPkARduU6N
https://github.com/pssolanki111/polygon/issues
https://github.com/pssolanki111/polygon/pulls
https://discord.gg/jPkARduU6N
https://github.com/pssolanki111/polygon/discussions
https://github.com/pssolanki111/polygon/issues/new/choose

polygon, Release 1.0.8

100 Chapter 10. Getting Help

CHAPTER

ELEVEN

BUGS, DISCUSSIONS, WIKIS, FAQS

This section provides info on Issues tracker, Discussions functionality, community wikis and FAQs.

11.1 Bug Reports or Feature Requests

Got a bug/report to report or a feature request? You’re in the right place.

Before submitting, make sure you have enough information to provide. It is advised to follow the provided template
but feel free to use your own. Just ensure you provide the following info:

• Your Operating system (Linux? Windows?)

• Your execution environment (Pycharm? VSC? A usual terminal? a cloud instance? a rasp pi?)

• Your python version and polygon version. always ensure you are on the latest version of the library. You can
update if you’re not using command pip install --upgrade polygon

• The full stack traceback and error message if any. Do not attempt to describe error messages in your own lan-
guages. Sometimes messages don’t mean what they say

• The code which causes the error. If your code is supposed to be secret, write a sample script which can reproduce
the issue. Always make sure to remove sensitive info from logs/code

In case of feature requests, describe what functionality would you like to be added to the library.

Open issues/feature requests here

11.2 Discussions

Discussions are meant to be a place for discussing general stuff which is not worth having an open issue for.

there are two discussion channels by default, one meant for everyone and other meant for contributors/developers

while it is possible to create your own discussions, it is preferred to keep it to those two channels unless needed.

101

https://github.com/pssolanki111/polygon/issues
https://github.com/pssolanki111/polygon/discussions
https://github.com/pssolanki111/polygon/discussions/1
https://github.com/pssolanki111/polygon/discussions/2

polygon, Release 1.0.8

11.3 Community Wikis

The community wiki is a place for everything which the community finds useful for others but isn’t in the documenta-
tion. every article is just a title and the description text. written in good old markdown. You can write plain text too if
you’re unsure of what markdown is.

Figured out how to achieve a specific task? Found something interesting? share it with the community by creating a
wiki page. Every contribution is significant so don’t hesitate.

Read the wiki articles, you may find your answers there.

11.4 FAQs

This is a handpicked collection of common questions and answers about the lib and endpoints in general. A must read
if you’re looking for answers.

FAQs are added here as soon I have any solid conclusions about a useful question.

Feel free to join our Discord Server if you suggestions for questions to add. You don’t necessarily need to know the
answer :D

102 Chapter 11. Bugs, Discussions, Wikis, FAQs

https://github.com/pssolanki111/polygon/wiki
https://discord.gg/jPkARduU6N

CHAPTER

TWELVE

CONTRIBUTING AND LICENSE

12.1 Contributing to the library

A bug you can fix? Improving documentation? Just wanna structure the code better? Every improvement matters.

Read this small guide to know how you can start contributing.

If this is your first time contributing to an open source project, Welcome. You’d probably want to contribute to
something you are confident about
Want to discuss anything related to the lib? head over to Developer Discussions. You may also use discussions to ask
anything related to contributions or library in general.

12.1.1 Picking up what to work on

If you already know what you’re going to work on, Great! If you don’t or just wanna explore the options; below are the
places to look at:

1. Take a look at open issues and see which ones you can work on.

2. Anything which could be improved in the documentation or readme ?

3. Any new endpoints introduced by polygon.io which are not in the library?

4. Any changes to endpoints which are already in the lib but not adjusted according to the new changes?

Once you know what to work on, you can proceed with setting up your environment.

12.1.2 Setting Up the Development Environment

May not be needed for documentation improvements.

Dependencies are listed in requirements.txt. The list has sphinx and sphinx_rtd_theme which are only meant to
build documentation.

It is highly recommended to install the dependencies in a virtual environment to avoid messing with your global inter-
preter.

pip install virtualenv
virtualenv venv
. venv/bin/activate

The last instruction above is for *nix machines. For windows .\venv\Scripts\activate.bat (or similar) is used

Install the requirements using

103

https://github.com/pssolanki111/polygon/discussions/2
https://github.com/pssolanki111/polygon/issues
https://polygon.readthedocs.io/
https://github.com/pssolanki111/polygon/blob/main/README.md
https://github.com/pssolanki111/polygon/blob/main/requirements.txt

polygon, Release 1.0.8

pip install -r requirements.txt

Now you can make your changes

12.1.3 Testing your changes

Currently the project uses the actual endpoints to perform tests (Suggestions/PRs for better testing mechanism are
welcome)

All test files are under directory tests. You’d need a valid polygon API key to perform the tests as they are right now.
If you don’t have a subscription, just make the changes, test them the way you like and raise the PR. I’ll test the changes
before merging.

However if you made changes to the documentation, run the below commands to build locally and test the documenta-
tion

cd docs
make html

The built docs would be placed under docs/_build/_html. Open index.html here in a browser and see your
changes. When you’re happy with them, raise the PR.

Remember to document your changes like this library does already.

12.2 License

Don’t kid yourself. You don’t care what license does the project use, do you? Anyways the project is licensed under
MIT License. See License for more details.

104 Chapter 12. Contributing and License

https://github.com/pssolanki111/polygon/blob/main/LICENSE

CHAPTER

THIRTEEN

LIBRARY INTERFACE DOCUMENTATION

Here is the Entire Library Interface reference.

13.1 Base Clients

13.1.1 Base Client

class polygon.base_client.Base

split_date_range(start, end, timespan: str, high_volatility: bool = False, reverse: bool = True)→ list
Internal helper function to split a BIGGER date range into smaller chunks to be able to easily fetch aggregate
bars data. The chunks duration is supposed to be different for time spans. For 1 minute bars, multiplier
would be 1, timespan would be ‘minute’

Parameters
• start – start of the time frame. accepts date, datetime objects or a string YYYY-MM-DD

• end – end of the time frame. accepts date, datetime objects or a string YYYY-MM-DD

• timespan – The frequency type. like day or minute. see polygon.enums.Timespan for
choices

• high_volatility – Specifies whether the symbol/security in question is highly volatile.
If set to True, the lib will use a smaller chunk of time to ensure we don’t miss any data due
to 50k candle limit. Defaults to False.

• reverse – If True (the default), will reverse the order of chunks (chronologically)

Returns
a list of tuples. each tuple is in format (start, end) and represents one chunk of time frame

static normalize_datetime(dt, output_type: str = 'ts', _dir: str = 'start', _format: str = '%Y-%m-%d',
unit: str = 'ms')

a core method to perform some specific datetime operations before/after interaction with the API

Parameters
• dt – The datetime input

• output_type – what to return. defaults to timestamp (utc if unaware obj)

• _dir – whether the input is meant for start of a range or end of it

• _format – The format string to use IFF expected to return as string

• unit – the timestamp units to work with. defaults to ms (milliseconds)

105

polygon, Release 1.0.8

Returns
The output timestamp or formatted string

static _change_enum(val: ~typing.Union[str, ~enum.Enum, float, int], allowed_type=<class 'str'>)

13.1.2 Base Sync Client

class polygon.base_client.BaseClient(api_key: str, connect_timeout: int = 10, read_timeout: int = 10)
These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This is the base client class for all other REST clients which inherit from this class and implement their own
endpoints on top of it.

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10)
Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

close()

Closes the requests.Session and frees up resources. It is recommended to call this method in your exit
handlers

_get_response(path: str, params: Optional[dict] = None, raw_response: bool = True)→ Union[Response,
dict]

Get response on a path. Meant to be used internally but can be used if you know what you’re doing

Parameters
• path – RESTful path for the endpoint. Available on the docs for the endpoint right above

its name.

• params – Query Parameters to be supplied with the request. These are mapped 1:1 with
the endpoint.

• raw_response – Whether to return the Response Object. Useful for when you need to
check the status code or inspect the headers. Defaults to True which returns the Response
object.

Returns
A Response object by default. Make raw_response=False to get JSON decoded Dictionary

get_page_by_url(url: str, raw_response: bool = False)→ Union[Response, dict]
Get the next page of a response. The URl is returned within next_url attribute on endpoints which support
pagination (eg the tickers endpoint). If the response doesn’t contain this attribute, either all pages were
received or the endpoint doesn’t have pagination. Meant for internal use primarily.

Parameters
• url – The next URL. As contained in next_url of the response.

106 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

• raw_response – Whether to return the Response Object. Useful for when you need to
say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
Either a Dictionary or a Response object depending on value of raw_response. Defaults to
Dict.

get_next_page(old_response: Union[Response, dict], raw_response: bool = False)→ Union[Response,
dict, bool]

Get the next page using the most recent old response. This function simply parses the next_url attribute
from the existing response and uses it to get the next page. Returns False if there is no next page remaining
(which implies that you have reached the end of all pages or the endpoint doesn’t support pagination).

Parameters
• old_response – The most recent existing response. Can be either Response Object or

Dictionaries

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_previous_page(old_response: Union[Response, dict], raw_response: bool = False)→
Union[Response, dict, bool]

Get the previous page using the most recent old response. This function simply parses the previous_url
attribute from the existing response and uses it to get the previous page. Returns False if there is no previous
page remaining (which implies that you have reached the start of all pages or the endpoint doesn’t support
pagination).

Parameters
• old_response – The most recent existing response. Can be either Response Object or

Dictionaries

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_all_pages(old_response, max_pages: Optional[int] = None, direction: str = 'next', verbose: bool =
False, raw_responses: bool = False)

A helper function for endpoints which implement pagination using next_url and previous_url at-
tributes. Can be used externally too to get all responses in a list.

Parameters
• old_response – The last response you had. In most cases, this would be simply the very

first response.

• max_pages – If you want to limit the number of pages to retrieve. Defaults to None which
fetches ALL available pages

13.1. Base Clients 107

polygon, Release 1.0.8

• direction – The direction to paginate in. Defaults to next which grabs all next_pages.
see polygon.enums.PaginationDirection for choices

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_responses – If set to True, the elements in container list, you will get underlying
Response object instead of the json formatted dict/list. Only use if you need to check status
codes or headers. Defaults to False, which makes it return decoded data in list.

Returns
A list of responses. By default, responses are actual json decoded dict/list. Depending on
value of raw_response

_paginate(_res, merge_all_pages: bool = True, max_pages: Optional[int] = None, verbose: bool = False,
raw_page_responses: bool = False)

Internal function to call the core pagination methods to build the response object to be parsed by individual
methods.

Parameters
• merge_all_pages – whether to merge all the pages into one response. defaults to True

• max_pages – number of pages to fetch. defaults to all available pages.

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – whether to keep raw response objects or decode them. Only
considered if merge_all_pages is set to False. Defaults to False.

Returns
get_full_range_aggregates(fn, symbol: str, time_chunks: list, run_parallel: bool = True,

max_concurrent_workers: int = 10, warnings: bool = True, adjusted: bool
= True, sort='asc', limit: int = 5000, multiplier: int = 1, timespan='day')→
list

Internal helper function to fetch aggregate bars for BIGGER time ranges. Should only be used internally.
Users should prefer the relevant aggregate function with additional parameters.

Parameters
• fn – The method to call in each chunked timeframe

• symbol – The ticker symbol to get data for

• time_chunks – The list of time chunks as returned by method split_datetime_range

• run_parallel – If true (the default), it will use an internal ThreadPool to get the re-
sponses in parallel. Note That since python has the GIL restrictions, it would mean that
if you have a ThreadPool of your own, only one ThreadPool will be running at a time and
the other pool will wait. set to False to get all responses in sequence (will take time)

• warnings – Defaults to True which prints warnings. Set to False to disable warnings.

• max_concurrent_workers – This is only used if run_parallel is set to true. Controls how
many worker threads are spawned in the internal thread pool. Defaults to your cpu core
count * 5

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

108 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

• sort – Sort the results by timestamp. See polygon.enums.SortOrder for choices. asc
default.

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

• multiplier – The size of the timespan multiplier. Must be a positive whole number.

• timespan – The size of the time window. See polygon.enums.Timespan for choices.
defaults to day

Returns
A single merged list of ALL candles/bars

13.1.3 Base Async Client

class polygon.base_client.BaseAsyncClient(api_key: str, connect_timeout: int = 10, read_timeout: int =
10, pool_timeout: int = 10, max_connections: Optional[int]
= None, max_keepalive: Optional[int] = None,
write_timeout: int = 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This is the base async client class for all other REST clients which inherit from this class and implement their
own endpoints on top of it.

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10, pool_timeout: int = 10,
max_connections: Optional[int] = None, max_keepalive: Optional[int] = None, write_timeout: int
= 10)

Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS.
Do NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults
to no limit. Do NOT change if you’re unsure of the applications.

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

async static aw_task(aw, semaphore)

13.1. Base Clients 109

polygon, Release 1.0.8

async close()

Closes the httpx.AsyncClient and frees up resources. It is recommended to call this method in your
exit handlers. This method should be awaited as this is a coroutine.

async _get_response(path: str, params: Optional[dict] = None, raw_response: bool = True)→
Union[Response, dict]

Get response on a path - meant to be used internally but can be used if you know what you’re doing

Parameters
• path – RESTful path for the endpoint. Available on the docs for the endpoint right above

its name.

• params – Query Parameters to be supplied with the request. These are mapped 1:1 with
the endpoint.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to check the status code or inspect the headers. Defaults to True which returns the
Response object.

Returns
A Response object by default. Make raw_response=False to get JSON decoded Dictionary

async get_page_by_url(url: str, raw_response: bool = False)→ Union[Response, dict]
Get the next page of a response. The URl is returned within next_url attribute on endpoints which support
pagination (eg the tickers’ endpoint). If the response doesn’t contain this attribute, either all pages were
received or the endpoint doesn’t have pagination. Meant for internal use primarily.

Parameters
• url – The next URL. As contained in next_url of the response.

• raw_response – Whether to return the Response Object. Useful for when you need to
say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
Either a Dictionary or a Response object depending on value of raw_response. Defaults to
Dict.

async get_next_page(old_response: Union[Response, dict], raw_response: bool = False)→
Union[Response, dict, bool]

Get the next page using the most recent old response. This function simply parses the next_url attribute
from the existing response and uses it to get the next page. Returns False if there is no next page remaining
(which implies that you have reached the end of all pages or the endpoint doesn’t support pagination) -
Async method

Parameters
• old_response – The most recent existing response. Can be either Response Object or

Dictionaries

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

110 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

async get_previous_page(old_response: Union[Response, dict], raw_response: bool = False)→
Union[Response, dict, bool]

Get the previous page using the most recent old response. This function simply parses the previous_url
attribute from the existing response and uses it to get the previous page. Returns False if there is no previous
page remaining (which implies that you have reached the start of all pages or the endpoint doesn’t support
pagination) - Async method

Parameters
• old_response – The most recent existing response. Can be either Response Object or

Dictionaries

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_all_pages(old_response, max_pages: Optional[int] = None, direction: str = 'next', verbose:
bool = False, raw_responses: bool = False)

A helper function for endpoints which implement pagination using next_url and previous_url at-
tributes. Can be used externally too to get all responses in a list.

Parameters
• old_response – The last response you had. In most cases, this would be simply the very

first response.

• max_pages – If you want to limit the number of pages to retrieve. Defaults to None which
fetches ALL available pages

• direction – The direction to paginate in. Defaults to next which grabs all next_pages.
see polygon.enums.PaginationDirection for choices

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_responses – If set to True, the elements in container list, you will get underlying
Response object instead of the json formatted dict/list. Only use if you need to check status
codes or headers. Defaults to False, which makes it return decoded data in list.

Returns
A list of responses. By default, responses are actual json decoded dict/list. Depending on
value of raw_response

async _paginate(_res, merge_all_pages: bool = True, max_pages: Optional[int] = None, verbose: bool =
False, raw_page_responses: bool = False)

Internal function to call the core pagination methods to build the response object to be parsed by individual
methods.

Parameters
• merge_all_pages – whether to merge all the pages into one response. defaults to True

• max_pages – number of pages to fetch. defaults to all available pages.

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

13.1. Base Clients 111

polygon, Release 1.0.8

• raw_page_responses – whether to keep raw response objects or decode them. Only
considered if merge_all_pages is set to False. Defaults to False.

Returns
async get_full_range_aggregates(fn, symbol: str, time_chunks: list, run_parallel: bool = True,

max_concurrent_workers: int = 10, warnings: bool = True,
adjusted: bool = True, sort='asc', limit: int = 5000, multiplier: int =
1, timespan='day')→ list

Internal helper function to fetch aggregate bars for BIGGER time ranges. Should only be used internally.
Users should prefer the relevant aggregate function with additional parameters.

Parameters
• fn – The method to call in each chunked timeframe

• symbol – The ticker symbol to get data for

• time_chunks – The list of time chunks as returned by method split_datetime_range

• run_parallel – If true (the default), it will use an internal ThreadPool to get the re-
sponses in parallel. Note That since python has the GIL restrictions, it would mean that
if you have a ThreadPool of your own, only one ThreadPool will be running at a time and
the other pool will wait. set to False to get all responses in sequence (will take time)

• warnings – Defaults to True which prints warnings. Set to False to disable warnings.

• max_concurrent_workers – This is only used if run_parallel is set to true. Controls
how many worker coroutines are spawned internally. Defaults to your cpu core count
* 5. An asyncio.Semaphore() is used behind the scenes.

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• sort – Sort the results by timestamp. See polygon.enums.SortOrder for choices. asc
default.

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

• multiplier – The size of the timespan multiplier. Must be a positive whole number.

• timespan – The size of the time window. See polygon.enums.Timespan for choices.
defaults to day

Returns
A single merged list of ALL candles/bars

13.2 Stocks Clients

13.2.1 Stocks Sync Client

class polygon.stocks.stocks.SyncStocksClient(api_key: str, connect_timeout: int = 10, read_timeout: int
= 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

112 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

This class implements all the Stocks REST endpoints. Note that you should always import names from top
level. eg: from polygon import StocksClient or import polygon (which allows you to access all names
easily)

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10)
Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

get_trades(symbol: str, date, timestamp: Optional[int] = None, timestamp_limit: Optional[int] = None,
reverse: bool = True, limit: int = 5000, raw_response: bool = False)

Get trades for a given ticker symbol on a specified date. The response from polygon seems to have a map
attribute which gives a mapping of attribute names to readable values. Official Docs

Parameters
• symbol – The ticker symbol we want trades for.

• date – The date/day of the trades to retrieve. Could be datetime or date or string
YYYY-MM-DD

• timestamp – The timestamp offset, used for pagination. Timestamp is the offset at which
to start the results. Using the timestamp of the last result as the offset will give you the next
page of results. Default: None. I’m trying to think of a good way to implement pagination
support for this type of pagination.

• timestamp_limit – The maximum timestamp allowed in the results. Default: None

• reverse – Reverse the order of the results. Default True: oldest first. Make it False for
Newest first

• limit – Limit the size of the response, max 50000 and default 5000.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_trades_v3(symbol: str, timestamp: Optional[int] = None, order=None, sort=None, limit: int = 5000,
timestamp_lt=None, timestamp_lte=None, timestamp_gt=None, timestamp_gte=None,
all_pages: bool = False, max_pages: Optional[int] = None, merge_all_pages: bool = True,
verbose: bool = False, raw_page_responses: bool = False, raw_response: bool = False)

Get trades for a ticker symbol in a given time range. Official Docs

Parameters
• symbol – The ticker symbol you want trades for.

• timestamp – Query by trade timestamp. Could be datetime or date or string
YYYY-MM-DD or a nanosecond timestamp

13.2. Stocks Clients 113

https://polygon.io/docs/stocks/get_v2_ticks_stocks_trades__ticker___date
https://polygon.io/docs/stocks/get_v3_trades__stockticker

polygon, Release 1.0.8

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to
None

• sort – field key to sort against. Defaults to None. see polygon.enums.
StocksTradesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_quotes(symbol: str, date, timestamp: Optional[int] = None, timestamp_limit: Optional[int] = None,
reverse: bool = True, limit: int = 5000, raw_response: bool = False)

Get Quotes for a given ticker symbol on a specified date. The response from polygon seems to have a map
attribute which gives a mapping of attribute names to readable values. Official Docs

Parameters
• symbol – The ticker symbol we want quotes for.

• date – The date/day of the quotes to retrieve. Could be datetime or date or string
YYYY-MM-DD

• timestamp – The timestamp offset, used for pagination. Timestamp is the offset at which
to start the results. Using the timestamp of the last result as the offset will give you the

114 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v2_ticks_stocks_nbbo__ticker___date

polygon, Release 1.0.8

next page of results. Default: None. Thinking of a good way to implement this pagination
here.

• timestamp_limit – The maximum timestamp allowed in the results. Default: None

• reverse – Reverse the order of the results. Default True: oldest first. Make it False for
Newest first

• limit – Limit the size of the response, max 50000 and default 5000.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_quotes_v3(symbol: str, timestamp: Optional[int] = None, order=None, sort=None, limit: int = 5000,
timestamp_lt=None, timestamp_lte=None, timestamp_gt=None, timestamp_gte=None,
all_pages: bool = False, max_pages: Optional[int] = None, merge_all_pages: bool = True,
verbose: bool = False, raw_page_responses: bool = False, raw_response: bool = False)

Get NBBO Quotes for a ticker symbol in a given time range. Official Docs

Parameters
• symbol – The ticker symbol you want quotes for.

• timestamp – Query by trade timestamp. Could be datetime or date or string
YYYY-MM-DD or a nanosecond timestamp

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to
None

• sort – field key to sort against. Defaults to None. see polygon.enums.
StocksQuotesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

13.2. Stocks Clients 115

https://polygon.io/docs/stocks/get_v3_quotes__stockticker

polygon, Release 1.0.8

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_last_trade(symbol: str, raw_response: bool = False)
Get the most recent trade for a given stock. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_last_quote(symbol: str, raw_response: bool = False)
Get the most recent NBBO (Quote) tick for a given stock. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_daily_open_close(symbol: str, date, adjusted: bool = True, raw_response: bool = False)
Get the OCHLV and after-hours prices of a stock symbol on a certain date. Official Docs

Parameters
• symbol – The ticker symbol we want daily-OCHLV for.

• date – The date/day of the daily-OCHLV to retrieve. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

116 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v2_last_trade__stocksticker
https://polygon.io/docs/stocks/get_v2_last_nbbo__stocksticker
https://polygon.io/docs/stocks/get_v1_open-close__stocksticker___date

polygon, Release 1.0.8

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_aggregate_bars(symbol: str, from_date, to_date, adjusted: bool = True, sort='asc', limit: int = 5000,
multiplier: int = 1, timespan='day', full_range: bool = False, run_parallel: bool =
True, max_concurrent_workers: int = 10, warnings: bool = True, high_volatility:
bool = False, raw_response: bool = False)

Get aggregate bars for a stock over a given date range in custom time window sizes. For example, if
timespan = ‘minute’ and multiplier = ‘5’ then 5-minute bars will be returned. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• from_date – The start of the aggregate time window. Could be datetime or date or
string YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• sort – Sort the results by timestamp. See polygon.enums.SortOrder for choices. asc
default.

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

• multiplier – The size of the timespan multiplier. Must be a positive whole number.

• timespan – The size of the time window. See polygon.enums.Timespan for choices.
defaults to day

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it
will run an internal ThreadPool to get the responses. This is fine to do if you are not running
your own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the
async version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to
your cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. De-
faults to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration
(eg SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t
miss any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If full_range=True, will return a single list with all the candles in it.

13.2. Stocks Clients 117

https://polygon.io/docs/stocks/get_v2_aggs_ticker__stocksticker__range__multiplier___timespan___from___to

polygon, Release 1.0.8

get_grouped_daily_bars(date, adjusted: bool = True, raw_response: bool = False)
Get the daily OCHLV for the entire stocks/equities markets. Official docs

Parameters
• date – The date to get the data for. Could be datetime or date or string YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_previous_close(symbol: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s OCHLV for the specified stock ticker. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_snapshot(symbol: str, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for a single
traded stock ticker. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_current_price(symbol: str)→ float
get current market price for the ticker symbol specified.

Uses get_last_trade() under the hood Official Docs

Parameters
symbol – The ticker symbol of the stock/equity.

Returns
The current price. A KeyError indicates the request wasn’t successful.

118 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v2_aggs_grouped_locale_us_market_stocks__date
https://polygon.io/docs/stocks/get_v2_aggs_ticker__stocksticker__prev
https://polygon.io/docs/stocks/get_v2_snapshot_locale_us_markets_stocks_tickers__stocksticker
https://polygon.io/docs/stocks/get_v2_last_trade__stocksticker

polygon, Release 1.0.8

get_snapshot_all(symbols: Optional[list] = None, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for all traded
stock symbols. Official Docs

Parameters
• symbols – A comma separated list of tickers to get snapshots for. Defaults to ALL tickers

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_gainers_and_losers(direction='gainers', raw_response: bool = False)
Get the current top 20 gainers or losers of the day in stocks/equities markets. Official Docs

Parameters
• direction – The direction of results. Defaults to gainers. See polygon.enums.
SnapshotDirection for choices

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

13.2.2 Stocks Async Client

class polygon.stocks.stocks.AsyncStocksClient(api_key: str, connect_timeout: int = 10, read_timeout:
int = 10, pool_timeout: int = 10, max_connections:
Optional[int] = None, max_keepalive: Optional[int] =
None, write_timeout: int = 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This class implements all the Stocks REST endpoints. Note that you should always import names from top
level. eg: from polygon import StocksClient or import polygon (which allows you to access all names
easily)

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10, pool_timeout: int = 10,
max_connections: Optional[int] = None, max_keepalive: Optional[int] = None, write_timeout: int
= 10)

Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

13.2. Stocks Clients 119

https://polygon.io/docs/stocks/get_v2_snapshot_locale_us_markets_stocks_tickers
https://polygon.io/docs/stocks/get_v2_snapshot_locale_us_markets_stocks__direction

polygon, Release 1.0.8

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS.
Do NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults
to no limit. Do NOT change if you’re unsure of the applications.

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

async get_trades(symbol: str, date, timestamp: Optional[int] = None, timestamp_limit: Optional[int] =
None, reverse: bool = True, limit: int = 5000, raw_response: bool = False)

Get trades for a given ticker symbol on a specified date. The response from polygon seems to have a map
attribute which gives a mapping of attribute names to readable values - Async method Official Docs

Parameters
• symbol – The ticker symbol we want trades for.

• date – The date/day of the trades to retrieve. Could be datetime or date or string
YYYY-MM-DD

• timestamp – The timestamp offset, used for pagination. Timestamp is the offset at which
to start the results. Using the timestamp of the last result as the offset will give you the next
page of results. Default: None. I’m trying to think of a good way to implement pagination
support for this type of pagination.

• timestamp_limit – The maximum timestamp allowed in the results. Default: None

• reverse – Reverse the order of the results. Default True: oldest first. Make it False for
Newest first

• limit – Limit the size of the response, max 50000 and default 5000.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_trades_v3(symbol: str, timestamp: Optional[int] = None, order=None, sort=None, limit: int =
5000, timestamp_lt=None, timestamp_lte=None, timestamp_gt=None,
timestamp_gte=None, all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False, raw_page_responses: bool =
False, raw_response: bool = False)

Get trades for a ticker symbol in a given time range. Official Docs

Parameters
• symbol – The ticker symbol you want trades for.

120 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v2_ticks_stocks_trades__ticker___date
https://polygon.io/docs/stocks/get_v3_trades__stockticker

polygon, Release 1.0.8

• timestamp – Query by trade timestamp. Could be datetime or date or string
YYYY-MM-DD or a nanosecond timestamp

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to
None

• sort – field key to sort against. Defaults to None. see polygon.enums.
StocksTradesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_quotes(symbol: str, date, timestamp: Optional[int] = None, timestamp_limit: Optional[int] =
None, reverse: bool = True, limit: int = 5000, raw_response: bool = False)

Get Quotes for a given ticker symbol on a specified date. The response from polygon seems to have a map
attribute which gives a mapping of attribute names to readable values - Async method Official Docs

Parameters
• symbol – The ticker symbol we want quotes for.

• date – The date/day of the quotes to retrieve. Could be datetime or date or string
YYYY-MM-DD

13.2. Stocks Clients 121

https://polygon.io/docs/stocks/get_v2_ticks_stocks_nbbo__ticker___date

polygon, Release 1.0.8

• timestamp – The timestamp offset, used for pagination. Timestamp is the offset at which
to start the results. Using the timestamp of the last result as the offset will give you the
next page of results. Default: None. Thinking of a good way to implement this pagination
here.

• timestamp_limit – The maximum timestamp allowed in the results. Default: None

• reverse – Reverse the order of the results. Default True: oldest first. Make it False for
Newest first

• limit – Limit the size of the response, max 50000 and default 5000.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_quotes_v3(symbol: str, timestamp: Optional[int] = None, order=None, sort=None, limit: int =
5000, timestamp_lt=None, timestamp_lte=None, timestamp_gt=None,
timestamp_gte=None, all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False, raw_page_responses: bool =
False, raw_response: bool = False)

Get NBBO Quotes for a ticker symbol in a given time range. Official Docs

Parameters
• symbol – The ticker symbol you want quotes for.

• timestamp – Query by trade timestamp. Could be datetime or date or string
YYYY-MM-DD or a nanosecond timestamp

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to
None

• sort – field key to sort against. Defaults to None. see polygon.enums.
StocksQuotesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

122 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v3_quotes__stockticker

polygon, Release 1.0.8

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_last_trade(symbol: str, raw_response: bool = False)
Get the most recent trade for a given stock - Async method Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_last_quote(symbol: str, raw_response: bool = False)
Get the most recent NBBO (Quote) tick for a given stock - Async method Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_daily_open_close(symbol: str, date, adjusted: bool = True, raw_response: bool = False)
Get the OCHLV and after-hours prices of a stock symbol on a certain date - Async method Official Docs

Parameters
• symbol – The ticker symbol we want daily-OCHLV for.

• date – The date/day of the daily-OCHLV to retrieve. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

13.2. Stocks Clients 123

https://polygon.io/docs/stocks/get_v2_last_trade__stocksticker
https://polygon.io/docs/stocks/get_v2_last_nbbo__stocksticker
https://polygon.io/docs/stocks/get_v1_open-close__stocksticker___date

polygon, Release 1.0.8

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_aggregate_bars(symbol: str, from_date, to_date, adjusted: bool = True, sort='asc', limit: int =
5000, multiplier: int = 1, timespan='day', full_range: bool = False,
run_parallel: bool = True, max_concurrent_workers: int = 10, warnings:
bool = True, high_volatility: bool = False, raw_response: bool = False)

Get aggregate bars for a stock over a given date range in custom time window sizes. For example, if
timespan = ‘minute’ and multiplier = ‘5’ then 5-minute bars will be returned. Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• from_date – The start of the aggregate time window. Could be datetime or date or
string YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• sort – Sort the results by timestamp. See polygon.enums.SortOrder for choices. asc
default.

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

• multiplier – The size of the timespan multiplier. Must be a positive whole number.

• timespan – The size of the time window. See polygon.enums.Timespan for choices.
defaults to day

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it
will run an internal ThreadPool to get the responses. This is fine to do if you are not running
your own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the
async version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to
your cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. De-
faults to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration
(eg SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t
miss any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. Will be ignored if full_range=True

124 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v2_aggs_ticker__stocksticker__range__multiplier___timespan___from___tor

polygon, Release 1.0.8

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If full_range=True, will return a single list with all the candles in it.

async get_grouped_daily_bars(date, adjusted: bool = True, raw_response: bool = False)
Get the daily OCHLV for the entire stocks/equities markets - Async method Official docs

Parameters
• date – The date to get the data for. Could be datetime or date or string YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_previous_close(symbol: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s OCHLV for the specified stock ticker - Async method Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_snapshot(symbol: str, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for a single
traded stock ticker - Async method Official Docs

Parameters
• symbol – The ticker symbol of the stock/equity.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_current_price(symbol: str)→ float
get current market price for the ticker symbol specified - Async method

Uses get_last_trade() under the hood Official Docs

Parameters
symbol – The ticker symbol of the stock/equity.

13.2. Stocks Clients 125

https://polygon.io/docs/stocks/get_v2_aggs_grouped_locale_us_market_stocks__date
https://polygon.io/docs/stocks/get_v2_aggs_ticker__stocksticker__prev
https://polygon.io/docs/stocks/get_v2_snapshot_locale_us_markets_stocks_tickers__stocksticker
https://polygon.io/docs/stocks/get_v2_last_trade__stocksticker

polygon, Release 1.0.8

Returns
The current price. A KeyError indicates the request wasn’t successful.

async get_snapshot_all(symbols: Optional[list] = None, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for all traded
stock symbols - Async method Official Docs

Parameters
• symbols – A comma separated list of tickers to get snapshots for. Defaults to ALL tickers

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_gainers_and_losers(direction='gainers', raw_response: bool = False)
Get the current top 20 gainers or losers of the day in stocks/equities markets - Async method Official Docs

Parameters
• direction – The direction of results. Defaults to gainers. See polygon.enums.
SnapshotDirection for choices

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

13.3 Options Clients

13.3.1 Option Symbol Helper Functions & Objects

polygon.options.options.build_option_symbol(underlying_symbol: str, expiry, call_or_put, strike_price,
_format='polygon', prefix_o: bool = False)→ str

Generic function to build option symbols for ALL supported formats: polygon.enums.OptionSymbolFormat.
Default format is polygon.

Parameters
• underlying_symbol – The underlying stock ticker symbol.

• expiry – The expiry date for the option. You can pass this argument as datetime.
datetime or datetime.date object. Or a string in format: YYMMDD. Using datetime objects
is recommended.

• call_or_put – The option type. You can specify: c or call or p or put. Capital letters
are also supported.

• strike_price – The strike price for the option. ALWAYS pass this as one number. 145,
240.5, 15.003, 56, 129.02 are all valid values. Try to keep up to 3 digits after the decimal
point

126 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v2_snapshot_locale_us_markets_stocks_tickers
https://polygon.io/docs/stocks/get_v2_snapshot_locale_us_markets_stocks__direction

polygon, Release 1.0.8

• _format – The format to use when building symbol. Defaults to polygon. Supported
formats are polygon, tda, tos, ibkr, tradier, trade_station. If you prefer to
use convenient enums, see polygon.enums.OptionSymbolFormat

• prefix_o – Whether to prefix the symbol with O:. It is needed by polygon endpoints.
However, all the library functions will automatically add this prefix if you pass in symbols
without this prefix. This parameter is ignored if format is not polygon

Returns
The option symbols string in the format specified

polygon.options.options.parse_option_symbol(option_symbol: str, _format='polygon',
output_format='object')

Generic function to build option symbols for ALL supported formats: polygon.enums.OptionSymbolFormat.
Default format is polygon.

Parameters
• option_symbol – the option symbol you want to parse

• _format – What format the symbol is in. If you don’t know the format you can use
the detect_option_symbol_format function to detect the format (best effort detection).
Supported formats are polygon, tda, tos, ibkr, tradier, trade_station. If you
prefer to use convenient enums, see polygon.enums.OptionSymbolFormat. Default:
polygon

• output_format – Output format of the result. defaults to object. Set it to dict or list as
needed.

Returns
The parsed info from symbol either as an object, list or a dict as indicated by output_format.

polygon.options.options.build_polygon_option_symbol(underlying_symbol: str, expiry, call_or_put,
strike_price, prefix_o: bool = False)→ str

Build the option symbol from the details provided, in standard polygon format

Parameters
• underlying_symbol – The underlying stock ticker symbol.

• expiry – The expiry date for the option. You can pass this argument as datetime.
datetime or datetime.date object. Or a string in format: YYMMDD. Using datetime objects
is recommended.

• call_or_put – The option type. You can specify: c or call or p or put. Capital letters
are also supported.

• strike_price – The strike price for the option. ALWAYS pass this as one number. 145,
240.5, 15.003, 56, 129.02 are all valid values. It shouldn’t have more than three numbers
after decimal point.

• prefix_o – Whether to prefix the symbol with O:. It is needed by polygon endpoints.
However, all the library functions will automatically add this prefix if you pass in symbols
without this prefix.

Returns
The option symbol in the format specified by polygon

polygon.options.options.parse_polygon_option_symbol(option_symbol: str, output_format='object')
Function to parse an option symbol in standard polygon format

Parameters

13.3. Options Clients 127

polygon, Release 1.0.8

• option_symbol – the symbol you want to parse. Both TSLA211015P125000 and
O:TSLA211015P125000 are valid

• output_format – Output format of the result. defaults to object. Set it to dict or list as
needed.

Returns
The parsed values either as an object, list or a dict as indicated by output_format.

polygon.options.options.convert_option_symbol_formats(option_symbol: str, from_format: str,
to_format: str)→ str

Convert an option symbol from one format to another within supported formats: polygon.enums.
OptionSymbolFormat

Parameters
• option_symbol – The option symbol you want to convert

• from_format – The format in which the option symbol is currently in. If you don’t
know the format you can use the detect_option_symbol_format function to detect
the format (best effort detection). Supported formats are polygon, tda, tos, ibkr,
tradier, trade_station. If you prefer to use convenient enums, see polygon.enums.
OptionSymbolFormat

• to_format – The format to which you want to convert the option symbol. Supported for-
mats are polygon, tda, tos, ibkr, tradier, trade_station. If you prefer to use
convenient enums, see polygon.enums.OptionSymbolFormat

Returns
The converted option symbol as a string

polygon.options.options.detect_option_symbol_format(option_symbol: str)→ Union[str, bool, list]
Detect what format a symbol is formed in. Supported formats are polygon.enums.OptionSymbolFormat.
This function does basic detection according to some simple rules. Test well before using in production.

Parameters
option_symbol – The option symbol to check the format of

Returns
Format’s shorthand string or list of strings if able to recognize the format. False otherwise.
Possible shorthand strings are polygon, tda, tos, ibkr, tradier, trade_station

polygon.options.options.ensure_prefix(symbol: str)
Ensure that the option symbol has the prefix O: as needed by polygon endpoints. If it does, make no changes. If
it doesn’t, add the prefix and return the new value.

Parameters
symbol – the option symbol to check

class polygon.options.options.OptionSymbol(option_symbol: str, symbol_format='polygon')
The custom object for parsed details from option symbols.

__init__(option_symbol: str, symbol_format='polygon')
Parses the details from symbol and creates attributes for the object.

Parameters
• option_symbol – the symbol you want to parse. Both TSLA211015P125000 and
O:TSLA211015P125000 are valid

• symbol_format – Which formatting spec to use. Defaults to polygon. also supports tda
which is the format supported by TD Ameritrade

128 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

__repr__()

Return repr(self).

13.3.2 Options Sync Client

class polygon.options.options.SyncOptionsClient(api_key: str, connect_timeout: int = 10,
read_timeout: int = 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This class implements all the Options REST endpoints. Note that you should always import names from top level.
eg: from polygon import OptionsClient or import polygon (which allows you to access all names eas-
ily)

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10)
Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

get_trades(option_symbol: str, timestamp=None, timestamp_lt=None, timestamp_lte=None,
timestamp_gt=None, timestamp_gte=None, sort='timestamp', limit: int = 5000, order='asc',
all_pages: bool = False, max_pages: Optional[int] = None, merge_all_pages: bool = True,
verbose: bool = False, raw_page_responses: bool = False, raw_response: bool = False)

Get trades for an options ticker symbol in a given time range. Note that you need to have an option symbol
in correct format for this endpoint. You can use ReferenceClient.get_option_contracts to query
option contracts using many filter parameters such as underlying symbol etc. Official Docs

Parameters
• option_symbol – The options ticker symbol to get trades for. for eg
O:TSLA210903C00700000. you can pass the symbol with or without the prefix
O:

• timestamp – Query by trade timestamp. You can supply a date, datetime object or a
nanosecond UNIX timestamp or a string in format: YYYY-MM-DD.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

13.3. Options Clients 129

https://polygon.io/docs/options/get_v3_trades__optionsticker

polygon, Release 1.0.8

• sort – Sort field used for ordering. Defaults to timestamp. See polygon.enums.
OptionTradesSort for available choices.

• limit – Limit the number of results returned. Defaults to 5000. max is 50000.

• order – order of the results. Defaults to asc. See polygon.enums.SortOrder for info
and available choices.

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_quotes(option_symbol: str, timestamp=None, timestamp_lt=None, timestamp_lte=None,
timestamp_gt=None, timestamp_gte=None, sort='timestamp', limit: int = 5000, order='asc',
all_pages: bool = False, max_pages: Optional[int] = None, merge_all_pages: bool = True,
verbose: bool = False, raw_page_responses: bool = False, raw_response: bool = False)

Get quotes for an options ticker symbol in a given time range. Note that you need to have an option symbol
in correct format for this endpoint. You can use ReferenceClient.get_option_contracts to query
option contracts using many filter parameters such as underlying symbol etc. Official Docs

Parameters
• option_symbol – The options ticker symbol to get quotes for. for eg
O:TSLA210903C00700000. you can pass the symbol with or without the prefix
O:

• timestamp – Query by quote timestamp. You can supply a date, datetime object or a
nanosecond UNIX timestamp or a string in format: YYYY-MM-DD.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

130 Chapter 13. Library Interface Documentation

https://polygon.io/docs/options/get_v3_quotes__optionsticker

polygon, Release 1.0.8

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• sort – Sort field used for ordering. Defaults to timestamp. See polygon.enums.
OptionQuotesSort for available choices.

• limit – Limit the number of results returned. Defaults to 5000. max is 50000.

• order – order of the results. Defaults to asc. See polygon.enums.SortOrder for info
and available choices.

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_last_trade(ticker: str, raw_response: bool = False)
Get the most recent trade for a given options contract. Official Docs

Parameters
• ticker – The ticker symbol of the options contract. Eg: O:TSLA210903C00700000

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
Either a Dictionary or a Response object depending on value of raw_response. Defaults to
Dict.

get_daily_open_close(symbol: str, date, adjusted: bool = True, raw_response: bool = False)
Get the OCHLV and after-hours prices of a contract on a certain date. Official Docs

Parameters
• symbol – The option symbol we want daily-OCHLV for. eg O:FB210903C00700000. You

can pass it with or without the prefix O:

13.3. Options Clients 131

https://polygon.io/docs/options/get_v2_last_trade__optionsticker
https://polygon.io/docs/options/get_v1_open-close__optionsticker___date

polygon, Release 1.0.8

• date – The date/day of the daily-OCHLV to retrieve. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_aggregate_bars(symbol: str, from_date, to_date, adjusted: bool = True, sort='asc', limit: int = 5000,
multiplier: int = 1, timespan='day', full_range: bool = False, run_parallel: bool =
True, max_concurrent_workers: int = 10, warnings: bool = True, high_volatility:
bool = False, raw_response: bool = False)

Get aggregate bars for an option contract over a given date range in custom time window sizes. For example,
if timespan = ‘minute’ and multiplier = ‘5’ then 5-minute bars will be returned. Official Docs

Parameters
• symbol – The ticker symbol of the contract. eg O:FB210903C00700000. You can pass in

with or without the prefix O:

• from_date – The start of the aggregate time window. Could be datetime or date or
string YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• sort – Sort the results by timestamp. See polygon.enums.SortOrder for choices. asc
default.

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000. see this article for more info.

• multiplier – The size of the timespan multiplier. Must be a positive whole number.
defaults to 1.

• timespan – The size of the time window. See polygon.enums.Timespan for choices.
defaults to day

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it
will run an internal ThreadPool to get the responses. This is fine to do if you are not running
your own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the
async version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to
your cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. De-
faults to True.

132 Chapter 13. Library Interface Documentation

https://polygon.io/docs/options/get_v2_aggs_ticker__optionsticker__range__multiplier___timespan___from___to
https://polygon.io/blog/aggs-api-updates/

polygon, Release 1.0.8

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration
(eg SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t
miss any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If full_range=True, will return a single list with all the candles in it.

get_snapshot(underlying_symbol: str, option_symbol: str, all_pages: bool = False, max_pages:
Optional[int] = None, merge_all_pages: bool = True, verbose: bool = False,
raw_page_responses: bool = False, raw_response: bool = False)

Get the snapshot of an option contract for a stock equity. Official Docs

Parameters
• underlying_symbol – The underlying ticker symbol of the option contract. eg AMD

• option_symbol – the option symbol. You can use use the Working with Option Symbols
section to make it easy to work with option symbols in polygon or tda formats.

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_previous_close(ticker: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s open, high, low, and close (OHLC) for the specified option contract. Official Docs

Parameters
• ticker – The ticker symbol of the options contract. Eg: O:TSLA210903C00700000

13.3. Options Clients 133

https://polygon.io/docs/options/get_v3_snapshot_options__underlyingasset___optioncontract
https://polygon.io/docs/options/get_v2_aggs_ticker__optionsticker__prev

polygon, Release 1.0.8

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
Either a Dictionary or a Response object depending on value of raw_response. Defaults to
Dict.

13.3.3 Options Async Client

class polygon.options.options.AsyncOptionsClient(api_key: str, connect_timeout: int = 10,
read_timeout: int = 10, pool_timeout: int = 10,
max_connections: Optional[int] = None,
max_keepalive: Optional[int] = None,
write_timeout: int = 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This class implements all the Options REST endpoints for async uses. Note that you should always import names
from top level. eg: from polygon import OptionsClient or import polygon (which allows you to access
all names easily)

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10, pool_timeout: int = 10,
max_connections: Optional[int] = None, max_keepalive: Optional[int] = None, write_timeout: int
= 10)

Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS.
Do NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults
to no limit. Do NOT change if you’re unsure of the applications.

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

134 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

async get_trades(option_symbol: str, timestamp=None, timestamp_lt=None, timestamp_lte=None,
timestamp_gt=None, timestamp_gte=None, sort='timestamp', limit: int = 5000,
order='asc', all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False, raw_page_responses: bool =
False, raw_response: bool = False)

Get trades for an options ticker symbol in a given time range. Note that you need to have an option symbol
in correct format for this endpoint. You can use ReferenceClient.get_option_contracts to query
option contracts using many filter parameters such as underlying symbol etc. Official Docs

Parameters
• option_symbol – The options ticker symbol to get trades for. for eg
O:TSLA210903C00700000. you can pass the symbol with or without the prefix
O:

• timestamp – Query by trade timestamp. You can supply a date, datetime object or a
nanosecond UNIX timestamp or a string in format: YYYY-MM-DD.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• sort – Sort field used for ordering. Defaults to timestamp. See polygon.enums.
OptionTradesSort for available choices.

• limit – Limit the number of results returned. Defaults to 100. max is 50000.

• order – order of the results. Defaults to asc. See polygon.enums.SortOrder for info
and available choices.

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

13.3. Options Clients 135

https://polygon.io/docs/options/get_v3_trades__optionsticker

polygon, Release 1.0.8

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_quotes(option_symbol: str, timestamp=None, timestamp_lt=None, timestamp_lte=None,
timestamp_gt=None, timestamp_gte=None, sort='timestamp', limit: int = 5000,
order='asc', all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False, raw_page_responses: bool =
False, raw_response: bool = False)

Get quotes for an options ticker symbol in a given time range. Note that you need to have an option symbol
in correct format for this endpoint. You can use ReferenceClient.get_option_contracts to query
option contracts using many filter parameters such as underlying symbol etc. Official Docs

Parameters
• option_symbol – The options ticker symbol to get quotes for. for eg
O:TSLA210903C00700000. you can pass the symbol with or without the prefix
O:

• timestamp – Query by quote timestamp. You can supply a date, datetime object or a
nanosecond UNIX timestamp or a string in format: YYYY-MM-DD.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• sort – Sort field used for ordering. Defaults to timestamp. See polygon.enums.
OptionQuotesSort for available choices.

• limit – Limit the number of results returned. Defaults to 5000. max is 50000.

• order – order of the results. Defaults to asc. See polygon.enums.SortOrder for info
and available choices.

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

136 Chapter 13. Library Interface Documentation

https://polygon.io/docs/options/get_v3_quotes__optionsticker

polygon, Release 1.0.8

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_last_trade(ticker: str, raw_response: bool = False)
Get the most recent trade for a given options contract - Async Official Docs

Parameters
• ticker – The ticker symbol of the options contract. Eg: O:TSLA210903C00700000

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
Either a Dictionary or a Response object depending on value of raw_response. Defaults to
Dict.

async get_daily_open_close(symbol: str, date, adjusted: bool = True, raw_response: bool = False)
Get the OCHLV and after-hours prices of a contract on a certain date. Official Docs

Parameters
• symbol – The option symbol we want daily-OCHLV for. eg O:FB210903C00700000. You

can pass it with or without the prefix O:

• date – The date/day of the daily-OCHLV to retrieve. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_aggregate_bars(symbol: str, from_date, to_date, adjusted: bool = True, sort='asc', limit: int =
5000, multiplier: int = 1, timespan='day', full_range: bool = False,
run_parallel: bool = True, max_concurrent_workers: int = 10, warnings:
bool = True, high_volatility: bool = False, raw_response: bool = False)

Get aggregate bars for an option contract over a given date range in custom time window sizes. For example,
if timespan = ‘minute’ and multiplier = ‘5’ then 5-minute bars will be returned. Official Docs

Parameters
• symbol – The ticker symbol of the contract. eg O:FB210903C00700000. You can pass in

with or without the prefix O:

• from_date – The start of the aggregate time window. Could be datetime or date or
string YYYY-MM-DD

13.3. Options Clients 137

https://polygon.io/docs/options/get_v2_last_trade__optionsticker
https://polygon.io/docs/options/get_v1_open-close__optionsticker___date
https://polygon.io/docs/options/get_v2_aggs_ticker__optionsticker__range__multiplier___timespan___from___to

polygon, Release 1.0.8

• to_date – The end of the aggregate time window. Could be datetime or date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• sort – Sort the results by timestamp. See polygon.enums.SortOrder for choices. asc
default.

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000. see this article for more info.

• multiplier – The size of the timespan multiplier. Must be a positive whole number.
defaults to 1.

• timespan – The size of the time window. See polygon.enums.Timespan for choices.
defaults to day

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it
will run an internal ThreadPool to get the responses. This is fine to do if you are not running
your own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the
async version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to
your cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. De-
faults to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration
(eg SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t
miss any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If full_range=True, will return a single list with all the candles in it.

async get_snapshot(underlying_symbol: str, option_symbol: str, all_pages: bool = False, max_pages:
Optional[int] = None, merge_all_pages: bool = True, verbose: bool = False,
raw_page_responses: bool = False, raw_response: bool = False)

Get the snapshot of an option contract for a stock equity. Official Docs

Parameters
• underlying_symbol – The underlying ticker symbol of the option contract. eg AMD

• option_symbol – the option symbol. You can use use the Working with Option Symbols
section to make it easy to work with option symbols in polygon or tda formats.

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

138 Chapter 13. Library Interface Documentation

https://polygon.io/blog/aggs-api-updates/
https://polygon.io/docs/options/get_v3_snapshot_options__underlyingasset___optioncontract

polygon, Release 1.0.8

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_previous_close(ticker: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s open, high, low, and close (OHLC) for the specified option contract - Async Official
Docs

Parameters
• ticker – The ticker symbol of the options contract. Eg: O:TSLA210903C00700000

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to false to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
Either a Dictionary or a Response object depending on value of raw_response. Defaults to
Dict.

13.4 References Clients

13.4.1 Reference Sync Client

class polygon.reference_apis.reference_api.SyncReferenceClient(api_key: str, connect_timeout: int
= 10, read_timeout: int = 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This class implements all the References REST endpoints. Note that you should always import names from top
level. eg: from polygon import ReferenceClient or import polygon (which allows you to access all
names easily)

13.4. References Clients 139

https://polygon.io/docs/options/get_v2_aggs_ticker__optionsticker__prev
https://polygon.io/docs/options/get_v2_aggs_ticker__optionsticker__prev

polygon, Release 1.0.8

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10)
Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

get_tickers(symbol: str = '', ticker_lt=None, ticker_lte=None, ticker_gt=None, ticker_gte=None,
symbol_type='', market='', exchange: str = '', cusip: Optional[str] = None, cik: str = '',
date=None, search: Optional[str] = None, active: bool = True, sort='ticker', order='asc',
limit: int = 1000, all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False, raw_page_responses: bool = False,
raw_response: bool = False)

Query all ticker symbols which are supported by Polygon.io. This API currently includes Stocks/Equities,
Crypto, and Forex. Official Docs

Parameters
• symbol – Specify a ticker symbol. Defaults to empty string which queries all tickers.

• ticker_lt – Return results where this field is less than the value given

• ticker_lte – Return results where this field is less than or equal to the value given

• ticker_gt – Return results where this field is greater than the value given

• ticker_gte – Return results where this field is greater than or equal to the value given

• symbol_type – Specify the type of the tickers. See polygon.enums.TickerType for
common choices. Find all supported types via the Ticker Types API Defaults to empty
string which queries all types.

• market – Filter by market type. By default all markets are included. See polygon.enums.
TickerMarketType for available choices.

• exchange – Specify the primary exchange of the asset in the ISO code format. Find more
information about the ISO codes at the ISO org website. Defaults to empty string which
queries all exchanges.

• cusip – Specify the CUSIP code of the asset you want to search for. Find more information
about CUSIP codes on their website Defaults to empty string which queries all CUSIPs

• cik – Specify the CIK of the asset you want to search for. Find more information about
CIK codes at their website Defaults to empty string which queries all CIKs.

• date – Specify a point in time to retrieve tickers available on that date. Defaults to the
most recent available date. Could be datetime, date or a string YYYY-MM-DD

• search – Search for terms within the ticker and/or company name. for eg MS will match
matching symbols

• active – Specify if the tickers returned should be actively traded on the queried date.
Default is True

140 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v3_reference_tickers
https://polygon.io/docs/stocks/get_v3_reference_tickers_types
https://www.iso20022.org/market-identifier-codes
https://www.cusip.com/identifiers.html#/CUSIP
https://www.sec.gov/edgar/searchedgar/cik.htm

polygon, Release 1.0.8

• sort – The field to sort the results on. Default is ticker. If the search query parameter
is present, sort is ignored and results are ordered by relevance. See polygon.enums.
TickerSortType for available choices.

• order – The order to sort the results on. Default is asc. See polygon.enums.SortOrder
for available choices.

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_ticker_types(asset_class=None, locale=None, raw_response: bool = False)
Get a mapping of ticker types to their descriptive names. Official Docs

Parameters
• asset_class – Filter by asset class. see polygon.enums.AssetClass for choices

• locale – Filter by locale. See polygon.enums.Locale for choices

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_ticker_details(symbol: str, date=None, raw_response: bool = False)
Get a single ticker supported by Polygon.io. This response will have detailed information about the ticker
and the company behind it. Official Docs

Parameters

13.4. References Clients 141

https://polygon.io/docs/stocks/get_v3_reference_tickers_types
https://polygon.io/docs/stocks/get_v3_reference_tickers__ticker

polygon, Release 1.0.8

• symbol – The ticker symbol of the asset.

• date – Specify a point in time to get information about the ticker available on that date.
When retrieving information from SEC filings, we compare this date with the period of
report date on the SEC filing. Defaults to the most recent available date.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_option_contract(ticker: str, as_of_date=None, raw_response: bool = False)
get Info about an option contract Official Docs

Parameters
• ticker – An option ticker in standard format. The lib provides easy functions to build and

work with option symbols

• as_of_date – Specify a point in time for the contract. You can pass a datetime or date
object or a string in format YYYY-MM-DD. Defaults to today’s date

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_option_contracts(underlying_ticker: Optional[str] = None, ticker: Optional[str] = None,
contract_type=None, expiration_date=None, expiration_date_lt=None,
expiration_date_lte=None, expiration_date_gt=None, expiration_date_gte=None,
order='asc', sort='expiration_date', limit=1000, all_pages: bool = False,
max_pages: Optional[int] = None, merge_all_pages: bool = True, verbose: bool =
False, raw_page_responses: bool = False, raw_response: bool = False)

List currently active options contracts Official Docs

Parameters
• underlying_ticker – Query for contracts relating to an underlying stock ticker.

• ticker – Query for a contract by option ticker.

• contract_type – Query by the type of contract. see polygon.enums.
OptionsContractType for choices

• expiration_date – Query by contract expiration date. either datetime, date or string
YYYY-MM-DD

• expiration_date_lt – expiration date less than given value

• expiration_date_lte – expiration date less than equal to given value

• expiration_date_gt – expiration_date greater than given value

• expiration_date_gte – expiration_date greater than equal to given value

• order – Order of results. See polygon.enums.SortOrder for choices.

142 Chapter 13. Library Interface Documentation

https://polygon.io/docs/options/get_v3_reference_options_contracts__options_ticker
https://polygon.readthedocs.io/en/latest/Options.html#creating-option-symbols
https://polygon.io/docs/options/get_v3_reference_options_contracts

polygon, Release 1.0.8

• sort – Sort field for ordering. See polygon.enums.OptionsContractsSortType for
choices. defaults to expiration_date

• limit – Limit the size of the response, default is 1000. Pagination is supported by the
pagination function below

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_ticker_news(symbol: Optional[str] = None, limit: int = 1000, order='desc', sort='published_utc',
ticker_lt=None, ticker_lte=None, ticker_gt=None, ticker_gte=None,
published_utc=None, published_utc_lt=None, published_utc_lte=None,
published_utc_gt=None, published_utc_gte=None, all_pages: bool = False, max_pages:
Optional[int] = None, merge_all_pages: bool = True, verbose: bool = False,
raw_page_responses: bool = False, raw_response: bool = False)

Get the most recent news articles relating to a stock ticker symbol, including a summary of the article and
a link to the original source. Official Docs

Parameters
• symbol – To get news mentioning the name given. Defaults to empty string which doesn’t

filter tickers

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• order – Order the results. See polygon.enums.SortOrder for choices.

• sort – The field key to sort. See polygon.enums.TickerNewsSort for choices.

• ticker_lt – Return results where this field is less than the value.

• ticker_lte – Return results where this field is less than or equal to the value.

• ticker_gt – Return results where this field is greater than the value

• ticker_gte – Return results where this field is greater than or equal to the value.

13.4. References Clients 143

https://polygon.io/docs/options/get_v2_reference_news

polygon, Release 1.0.8

• published_utc – A date string YYYY-MM-DD or datetime for published date time filters.

• published_utc_lt – Return results where this field is less than the value given

• published_utc_lte – Return results where this field is less than or equal to the value
given

• published_utc_gt – Return results where this field is greater than the value given

• published_utc_gte – Return results where this field is greater than or equal to the value
given

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_stock_dividends(ticker: Optional[str] = None, ex_dividend_date=None, record_date=None,
declaration_date=None, pay_date=None, frequency: Optional[int] = None, limit:
int = 1000, cash_amount=None, dividend_type=None, sort: str = 'pay_date', order:
str = 'asc', ticker_lt=None, ticker_lte=None, ticker_gt=None, ticker_gte=None,
ex_dividend_date_lt=None, ex_dividend_date_lte=None,
ex_dividend_date_gt=None, ex_dividend_date_gte=None, record_date_lt=None,
record_date_lte=None, record_date_gt=None, record_date_gte=None,
declaration_date_lt=None, declaration_date_lte=None, declaration_date_gt=None,
declaration_date_gte=None, pay_date_lt=None, pay_date_lte=None,
pay_date_gt=None, pay_date_gte=None, cash_amount_lt=None,
cash_amount_lte=None, cash_amount_gt=None, cash_amount_gte=None,
all_pages: bool = False, max_pages: Optional[int] = None, merge_all_pages: bool
= True, verbose: bool = False, raw_page_responses: bool = False, raw_response:
bool = False)

Get a list of historical cash dividends, including the ticker symbol, declaration date, ex-dividend date, record
date, pay date, frequency, and amount. Official Docs

Parameters
• ticker – Return the dividends that contain this ticker.

144 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v3_reference_dividends

polygon, Release 1.0.8

• ex_dividend_date – Query by ex-dividend date. could be a date, datetime object or a
string YYYY-MM-DD

• record_date – Query by record date. could be a date, datetime object or a string
YYYY-MM-DD

• declaration_date – Query by declaration date. could be a date, datetime object or a
string YYYY-MM-DD

• pay_date – Query by pay date. could be a date, datetime object or a string YYYY-MM-DD

• frequency – Query by the number of times per year the dividend is paid out. No default
value applied. see polygon.enums.PayoutFrequency for choices

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• cash_amount – Query by the cash amount of the dividend.

• dividend_type – Query by the type of dividend. See polygon.enums.DividendType
for choices

• sort – sort key used for ordering. See polygon.enums.DividendSort for choices.

• order – orders of results. defaults to asc. see polygon.enums.SortOrder for choices

• ticker_lt – filter where ticker is less than given value (alphabetically)

• ticker_lte – filter where ticker is less than or equal to given value (alphabetically)

• ticker_gt – filter where ticker is greater than given value (alphabetically)

• ticker_gte – filter where ticker is greater than or equal to given value (alphabetically)

• ex_dividend_date_lt – filter where ex-div date is less than given date

• ex_dividend_date_lte – filter where ex-div date is less than or equal to given date

• ex_dividend_date_gt – filter where ex-div date is greater than given date

• ex_dividend_date_gte – filter where ex-div date is greater than or equal to given date

• record_date_lt – filter where record date is less than given date

• record_date_lte – filter where record date is less than or equal to given date

• record_date_gt – filter where record date is greater than given date

• record_date_gte – filter where record date is greater than or equal to given date

• declaration_date_lt – filter where declaration date is less than given date

• declaration_date_lte – filter where declaration date is less than or equal to given date

• declaration_date_gt – filter where declaration date is greater than given date

• declaration_date_gte – filter where declaration date is greater than or equal to given
date

• pay_date_lt – filter where pay date is less than given date

• pay_date_lte – filter where pay date is less than or equal to given date

• pay_date_gt – filter where pay date is greater than given date

• pay_date_gte – filter where pay date is greater than or equal to given date

• cash_amount_lt – filter where cash amt is less than given value

13.4. References Clients 145

polygon, Release 1.0.8

• cash_amount_lte – filter where cash amt is less than or equal to given value

• cash_amount_gt – filter where cash amt is greater than given value

• cash_amount_gte – filter where cash amt is greater than or equal to given value

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_stock_financials_vx(ticker: Optional[str] = None, cik: Optional[str] = None, company_name:
Optional[str] = None, company_name_search: Optional[str] = None, sic:
Optional[str] = None, filing_date=None, filing_date_lt=None,
filing_date_lte=None, filing_date_gt=None, filing_date_gte=None,
period_of_report_date=None, period_of_report_date_lt=None,
period_of_report_date_lte=None, period_of_report_date_gt=None,
period_of_report_date_gte=None, time_frame=None, include_sources: bool =
False, order='asc', limit: int = 50, sort='filing_date', raw_response: bool =
False)

Get historical financial data for a stock ticker. The financials data is extracted from XBRL from company
SEC filings using this methodology Official Docs

This API is experimental and will replace get_stock_financials() in future.

Parameters
• ticker – Filter query by company ticker.

• cik – filter the Query by central index key (CIK) Number

• company_name – filter the query by company name

• company_name_search – partial match text search for company names

• sic – Query by standard industrial classification (SIC)

• filing_date – Query by the date when the filing with financials data was filed.
datetime/date or string YYYY-MM-DD

146 Chapter 13. Library Interface Documentation

http://xbrl.squarespace.com/understanding-sec-xbrl-financi/
https://polygon.io/docs/stocks/get_vx_reference_financials

polygon, Release 1.0.8

• filing_date_lt – filter for filing date less than given value

• filing_date_lte – filter for filing date less than equal to given value

• filing_date_gt – filter for filing date greater than given value

• filing_date_gte – filter for filing date greater than equal to given value

• period_of_report_date – query by The period of report for the filing with financials
data. datetime/date or string in format: YYY-MM-DD.

• period_of_report_date_lt – filter for period of report date less than given value

• period_of_report_date_lte – filter for period of report date less than equal to given
value

• period_of_report_date_gt – filter for period of report date greater than given value

• period_of_report_date_gte – filter for period of report date greater than equal to given
value

• time_frame – Query by timeframe. Annual financials originate from 10-K filings,
and quarterly financials originate from 10-Q filings. Note: Most companies do not
file quarterly reports for Q4 and instead include those financials in their annual report,
so some companies my not return quarterly financials for Q4. See polygon.enums.
StockFinancialsTimeframe for choices.

• include_sources – Whether or not to include the xpath and formula attributes for each
financial data point. See the xpath and formula response attributes for more info. False
by default

• order – Order results based on the sort field. ‘asc’ by default. See polygon.enums.
SortOrder for choices.

• limit – number of max results to obtain. defaults to 50.

• sort – Sort field key used for ordering. ‘filing_date’ default. see polygon.enums.
StockFinancialsSortKey for choices.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_stock_splits(ticker: Optional[str] = None, execution_date=None, reverse_split: Optional[bool] =
None, order: str = 'asc', sort: str = 'execution_date', limit: int = 1000, ticker_lt=None,
ticker_lte=None, ticker_gt=None, ticker_gte=None, execution_date_lt=None,
execution_date_lte=None, execution_date_gt=None, execution_date_gte=None,
all_pages: bool = False, max_pages: Optional[int] = None, merge_all_pages: bool =
True, verbose: bool = False, raw_page_responses: bool = False, raw_response: bool =
False)

Get a list of historical stock splits, including the ticker symbol, the execution date, and the factors of the
split ratio. Official Docs

Parameters
• ticker – Return the stock splits that contain this ticker. defaults to no ticker filter returning

all.

13.4. References Clients 147

https://polygon.io/docs/stocks/get_v3_reference_splits

polygon, Release 1.0.8

• execution_date – query by execution date. could be a date, datetime object or a string
YYYY-MM-DD

• reverse_split – Query for reverse stock splits. A split ratio where split_from is greater
than split_to represents a reverse split. By default this filter is not used.

• order – Order results based on the sort field. defaults to ascending. See polygon.enums.
SortOrder for choices

• sort – Sort field used for ordering. Defaults to ‘execution_date’. See polygon.enums.
SplitsSortKey for choices.

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• ticker_lt – filter where ticker name is less than given value (alphabetically)

• ticker_lte – filter where ticker name is less than or equal to given value (alphabetically)

• ticker_gt – filter where ticker name is greater than given value (alphabetically)

• ticker_gte – filter where ticker name is greater than or equal to given value (alphabeti-
cally)

• execution_date_lt – filter where execution date is less than given value

• execution_date_lte – filter where execution date is less than or equal to given value

• execution_date_gt – filter where execution date is greater than given value

• execution_date_gte – filter where execution date is greater than or equal to given value

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_market_holidays(raw_response: bool = False)
Get upcoming market holidays and their open/close times. Official Docs

148 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v1_marketstatus_upcoming

polygon, Release 1.0.8

Parameters
raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_market_status(raw_response: bool = False)
Get the current trading status of the exchanges and overall financial markets. Official Docs

Parameters
raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_conditions(asset_class=None, data_type=None, condition_id=None, sip=None, order=None, limit:
int = 50, sort='name', raw_response: bool = False)

List all conditions that Polygon.io uses. Official Docs

Parameters
• asset_class – Filter for conditions within a given asset class. See polygon.enums.
AssetClass for choices. Defaults to all assets.

• data_type – Filter by data type. See polygon.enums.ConditionsDataType for
choices. defaults to all.

• condition_id – Filter for conditions with a given ID

• sip – Filter by SIP. If the condition contains a mapping for that SIP, the condition will be
returned.

• order – Order results. See polygon.enums.SortOrder for choices.

• limit – limit the number of results. defaults to 50.

• sort – Sort field used for ordering. Defaults to ‘name’. See polygon.enums.
ConditionsSortKey for choices.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_exchanges(asset_class=None, locale=None, raw_response: bool = False)
List all exchanges that Polygon.io knows about. Official Docs

Parameters
• asset_class – filter by asset class. See polygon.enums.AssetClass for choices.

• locale – Filter by locale name. See polygon.enums.Locale

13.4. References Clients 149

https://polygon.io/docs/stocks/get_v1_marketstatus_now
https://polygon.io/docs/stocks/get_v3_reference_conditions
https://polygon.io/docs/stocks/get_v3_reference_exchanges

polygon, Release 1.0.8

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

13.4.2 Reference Async Client

class polygon.reference_apis.reference_api.AsyncReferenceClient(api_key: str, connect_timeout:
int = 10, read_timeout: int = 10,
pool_timeout: int = 10,
max_connections: Optional[int]
= None, max_keepalive:
Optional[int] = None,
write_timeout: int = 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This class implements all the References REST endpoints. Note that you should always import names from top
level. eg: from polygon import ReferenceClient or import polygon (which allows you to access all
names easily)

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10, pool_timeout: int = 10,
max_connections: Optional[int] = None, max_keepalive: Optional[int] = None, write_timeout: int
= 10)

Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS.
Do NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults
to no limit. Do NOT change if you’re unsure of the applications.

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

150 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

async get_tickers(symbol: str = '', ticker_lt=None, ticker_lte=None, ticker_gt=None, ticker_gte=None,
symbol_type='', market='', exchange: str = '', cusip: Optional[str] = None, cik: str = '',
date=None, search: Optional[str] = None, active: bool = True, sort='ticker', order: str
= 'asc', limit: int = 1000, all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False, raw_page_responses: bool =
False, raw_response: bool = False)

Query all ticker symbols which are supported by Polygon.io. This API currently includes Stocks/Equities,
Crypto, and Forex. Official Docs

Parameters
• symbol – Specify a ticker symbol. Defaults to empty string which queries all tickers.

• ticker_lt – Return results where this field is less than the value given

• ticker_lte – Return results where this field is less than or equal to the value given

• ticker_gt – Return results where this field is greater than the value given

• ticker_gte – Return results where this field is greater than or equal to the value given

• symbol_type – Specify the type of the tickers. See polygon.enums.TickerType for
common choices. Find all supported types via the Ticker Types API Defaults to empty
string which queries all types.

• market – Filter by market type. By default all markets are included. See polygon.enums.
TickerMarketType for available choices.

• exchange – Specify the primary exchange of the asset in the ISO code format. Find more
information about the ISO codes at the ISO org website. Defaults to empty string which
queries all exchanges.

• cusip – Specify the CUSIP code of the asset you want to search for. Find more information
about CUSIP codes on their website Defaults to empty string which queries all CUSIPs

• cik – Specify the CIK of the asset you want to search for. Find more information about
CIK codes at their website Defaults to empty string which queries all CIKs.

• date – Specify a point in time to retrieve tickers available on that date. Defaults to the
most recent available date. Could be datetime, date or a string YYYY-MM-DD

• search – Search for terms within the ticker and/or company name. for eg MS will match
matching symbols

• active – Specify if the tickers returned should be actively traded on the queried date.
Default is True

• sort – The field to sort the results on. Default is ticker. If the search query parameter
is present, sort is ignored and results are ordered by relevance. See polygon.enums.
TickerSortType for available choices.

• order – The order to sort the results on. Default is asc. See polygon.enums.SortOrder
for available choices.

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

13.4. References Clients 151

https://polygon.io/docs/stocks/get_v3_reference_tickers
https://polygon.io/docs/get_v2_reference_types_anchor
https://www.iso20022.org/market-identifier-codes
https://www.cusip.com/identifiers.html#/CUSIP
https://www.sec.gov/edgar/searchedgar/cik.htm

polygon, Release 1.0.8

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_ticker_types(asset_class=None, locale=None, raw_response: bool = False)
Get a mapping of ticker types to their descriptive names - Async method Official Docs

Parameters
• asset_class – Filter by asset class. see polygon.enums.AssetClass for choices

• locale – Filter by locale. See polygon.enums.Locale for choices

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_ticker_details(symbol: str, date=None, raw_response: bool = False)
Get a single ticker supported by Polygon.io. This response will have detailed information about the ticker
and the company behind it. Official Docs

Parameters
• symbol – The ticker symbol of the asset.

• date – Specify a point in time to get information about the ticker available on that date.
When retrieving information from SEC filings, we compare this date with the period of
report date on the SEC filing. Defaults to the most recent available date.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

152 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v3_reference_tickers_types
https://polygon.io/docs/stocks/get_v3_reference_tickers__ticker

polygon, Release 1.0.8

async get_option_contract(ticker: str, as_of_date=None, raw_response: bool = False)
get Info about an option contract Official Docs

Parameters
• ticker – An option ticker in standard format. The lib provides easy functions to build and

work with option symbols

• as_of_date – Specify a point in time for the contract. You can pass a datetime or date
object or a string in format YYYY-MM-DD. Defaults to today’s date

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_option_contracts(underlying_ticker: Optional[str] = None, ticker: Optional[str] = None,
contract_type=None, expiration_date=None, expiration_date_lt=None,
expiration_date_lte=None, expiration_date_gt=None,
expiration_date_gte=None, order='asc', sort='expiration_date',
limit=1000, all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False,
raw_page_responses: bool = False, raw_response: bool = False)

List currently active options contracts Official Docs

Parameters
• underlying_ticker – Query for contracts relating to an underlying stock ticker.

• ticker – Query for a contract by option ticker.

• contract_type – Query by the type of contract. see polygon.enums.
OptionsContractType for choices

• expiration_date – Query by contract expiration date. either datetime, date or string
YYYY-MM-DD

• expiration_date_lt – expiration date less than given value

• expiration_date_lte – expiration date less than equal to given value

• expiration_date_gt – expiration_date greater than given value

• expiration_date_gte – expiration_date greater than equal to given value

• order – Order of results. See polygon.enums.SortOrder for choices.

• sort – Sort field for ordering. See polygon.enums.OptionsContractsSortType for
choices. defaults to expiration_date

• limit – Limit the size of the response, default is 1000. Pagination is supported by the
pagination function below

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

13.4. References Clients 153

https://polygon.io/docs/options/get_v3_reference_options_contracts__options_ticker
https://polygon.readthedocs.io/en/latest/Options.html#creating-option-symbols
https://polygon.io/docs/options/get_v3_reference_options_contracts

polygon, Release 1.0.8

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_ticker_news(symbol: Optional[str] = None, limit: int = 1000, order='desc',
sort='published_utc', ticker_lt=None, ticker_lte=None, ticker_gt=None,
ticker_gte=None, published_utc=None, published_utc_lt=None,
published_utc_lte=None, published_utc_gt=None, published_utc_gte=None,
all_pages: bool = False, max_pages: Optional[int] = None, merge_all_pages:
bool = True, verbose: bool = False, raw_page_responses: bool = False,
raw_response: bool = False)

Get the most recent news articles relating to a stock ticker symbol, including a summary of the article and
a link to the original source - Async method Official Docs

Parameters
• symbol – To get news mentioning the name given. Defaults to empty string which doesn’t

filter tickers

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• order – Order the results. See polygon.enums.SortOrder for choices.

• sort – The field key to sort. See polygon.enums.TickerNewsSort for choices.

• ticker_lt – Return results where this field is less than the value.

• ticker_lte – Return results where this field is less than or equal to the value.

• ticker_gt – Return results where this field is greater than the value

• ticker_gte – Return results where this field is greater than or equal to the value.

• published_utc – A date string YYYY-MM-DD or datetime for published date time filters.

• published_utc_lt – Return results where this field is less than the value given

• published_utc_lte – Return results where this field is less than or equal to the value
given

• published_utc_gt – Return results where this field is greater than the value given

• published_utc_gte – Return results where this field is greater than or equal to the value
given

154 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v2_reference_news

polygon, Release 1.0.8

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_stock_dividends(ticker: Optional[str] = None, ex_dividend_date=None, record_date=None,
declaration_date=None, pay_date=None, frequency: Optional[int] = None,
limit: int = 1000, cash_amount=None, dividend_type=None, sort: str =
'pay_date', order: str = 'asc', ticker_lt=None, ticker_lte=None,
ticker_gt=None, ticker_gte=None, ex_dividend_date_lt=None,
ex_dividend_date_lte=None, ex_dividend_date_gt=None,
ex_dividend_date_gte=None, record_date_lt=None, record_date_lte=None,
record_date_gt=None, record_date_gte=None, declaration_date_lt=None,
declaration_date_lte=None, declaration_date_gt=None,
declaration_date_gte=None, pay_date_lt=None, pay_date_lte=None,
pay_date_gt=None, pay_date_gte=None, cash_amount_lt=None,
cash_amount_lte=None, cash_amount_gt=None, cash_amount_gte=None,
all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False, raw_page_responses:
bool = False, raw_response: bool = False)

Get a list of historical cash dividends, including the ticker symbol, declaration date, ex-dividend date, record
date, pay date, frequency, and amount. Official Docs

Parameters
• ticker – Return the dividends that contain this ticker.

• ex_dividend_date – Query by ex-dividend date. could be a date, datetime object or a
string YYYY-MM-DD

• record_date – Query by record date. could be a date, datetime object or a string
YYYY-MM-DD

• declaration_date – Query by declaration date. could be a date, datetime object or a
string YYYY-MM-DD

13.4. References Clients 155

https://polygon.io/docs/stocks/get_v3_reference_dividends

polygon, Release 1.0.8

• pay_date – Query by pay date. could be a date, datetime object or a string YYYY-MM-DD

• frequency – Query by the number of times per year the dividend is paid out. No default
value applied. see polygon.enums.PayoutFrequency for choices

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• cash_amount – Query by the cash amount of the dividend.

• dividend_type – Query by the type of dividend. See polygon.enums.DividendType
for choices

• sort – sort key used for ordering. See polygon.enums.DividendSort for choices.

• order – orders of results. defaults to asc. see polygon.enums.SortOrder for choices

• ticker_lt – filter where ticker is less than given value (alphabetically)

• ticker_lte – filter where ticker is less than or equal to given value (alphabetically)

• ticker_gt – filter where ticker is greater than given value (alphabetically)

• ticker_gte – filter where ticker is greater than or equal to given value (alphabetically)

• ex_dividend_date_lt – filter where ex-div date is less than given date

• ex_dividend_date_lte – filter where ex-div date is less than or equal to given date

• ex_dividend_date_gt – filter where ex-div date is greater than given date

• ex_dividend_date_gte – filter where ex-div date is greater than or equal to given date

• record_date_lt – filter where record date is less than given date

• record_date_lte – filter where record date is less than or equal to given date

• record_date_gt – filter where record date is greater than given date

• record_date_gte – filter where record date is greater than or equal to given date

• declaration_date_lt – filter where declaration date is less than given date

• declaration_date_lte – filter where declaration date is less than or equal to given date

• declaration_date_gt – filter where declaration date is greater than given date

• declaration_date_gte – filter where declaration date is greater than or equal to given
date

• pay_date_lt – filter where pay date is less than given date

• pay_date_lte – filter where pay date is less than or equal to given date

• pay_date_gt – filter where pay date is greater than given date

• pay_date_gte – filter where pay date is greater than or equal to given date

• cash_amount_lt – filter where cash amt is less than given value

• cash_amount_lte – filter where cash amt is less than or equal to given value

• cash_amount_gt – filter where cash amt is greater than given value

• cash_amount_gte – filter where cash amt is greater than or equal to given value

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

156 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_stock_financials_vx(ticker: Optional[str] = None, cik: Optional[str] = None,
company_name: Optional[str] = None, company_name_search:
Optional[str] = None, sic: Optional[str] = None, filing_date=None,
filing_date_lt=None, filing_date_lte=None, filing_date_gt=None,
filing_date_gte=None, period_of_report_date=None,
period_of_report_date_lt=None, period_of_report_date_lte=None,
period_of_report_date_gt=None, period_of_report_date_gte=None,
time_frame=None, include_sources: bool = False, order='asc', limit:
int = 50, sort='filing_date', raw_response: bool = False)

Get historical financial data for a stock ticker. The financials data is extracted from XBRL from company
SEC filings using this methodology - Async method Official Docs

This API is experimental and will replace get_stock_financials() in future.

Parameters
• ticker – Filter query by company ticker.

• cik – filter the Query by central index key (CIK) Number

• company_name – filter the query by company name

• company_name_search – partial match text search for company names

• sic – Query by standard industrial classification (SIC)

• filing_date – Query by the date when the filing with financials data was filed.
datetime/date or string YYYY-MM-DD

• filing_date_lt – filter for filing date less than given value

• filing_date_lte – filter for filing date less than equal to given value

• filing_date_gt – filter for filing date greater than given value

• filing_date_gte – filter for filing date greater than equal to given value

13.4. References Clients 157

http://xbrl.squarespace.com/understanding-sec-xbrl-financi/
https://polygon.io/docs/stocks/get_vx_reference_financials

polygon, Release 1.0.8

• period_of_report_date – query by The period of report for the filing with financials
data. datetime/date or string in format: YYY-MM-DD.

• period_of_report_date_lt – filter for period of report date less than given value

• period_of_report_date_lte – filter for period of report date less than equal to given
value

• period_of_report_date_gt – filter for period of report date greater than given value

• period_of_report_date_gte – filter for period of report date greater than equal to given
value

• time_frame – Query by timeframe. Annual financials originate from 10-K filings,
and quarterly financials originate from 10-Q filings. Note: Most companies do not
file quarterly reports for Q4 and instead include those financials in their annual report,
so some companies my not return quarterly financials for Q4. See polygon.enums.
StockFinancialsTimeframe for choices.

• include_sources – Whether or not to include the xpath and formula attributes for each
financial data point. See the xpath and formula response attributes for more info. False
by default

• order – Order results based on the sort field. ‘asc’ by default. See polygon.enums.
SortOrder for choices.

• limit – number of max results to obtain. defaults to 50.

• sort – Sort field key used for ordering. ‘filing_date’ default. see polygon.enums.
StockFinancialsSortKey for choices.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_stock_splits(ticker: Optional[str] = None, execution_date=None, reverse_split:
Optional[bool] = None, order: str = 'asc', sort: str = 'execution_date', limit: int
= 1000, ticker_lt=None, ticker_lte=None, ticker_gt=None, ticker_gte=None,
execution_date_lt=None, execution_date_lte=None, execution_date_gt=None,
execution_date_gte=None, all_pages: bool = False, max_pages: Optional[int]
= None, merge_all_pages: bool = True, verbose: bool = False,
raw_page_responses: bool = False, raw_response: bool = False)

Get a list of historical stock splits, including the ticker symbol, the execution date, and the factors of the
split ratio. Official Docs

Parameters
• ticker – Return the stock splits that contain this ticker. defaults to no ticker filter returning

all.

• execution_date – query by execution date. could be a date, datetime object or a string
YYYY-MM-DD

• reverse_split – Query for reverse stock splits. A split ratio where split_from is greater
than split_to represents a reverse split. By default this filter is not used.

• order – Order results based on the sort field. defaults to ascending. See polygon.enums.
SortOrder for choices

158 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v3_reference_splits

polygon, Release 1.0.8

• sort – Sort field used for ordering. Defaults to ‘execution_date’. See polygon.enums.
SplitsSortKey for choices.

• limit – Limit the size of the response, default is 1000 which is also the max. Pagination
is supported by the pagination function below

• ticker_lt – filter where ticker name is less than given value (alphabetically)

• ticker_lte – filter where ticker name is less than or equal to given value (alphabetically)

• ticker_gt – filter where ticker name is greater than given value (alphabetically)

• ticker_gte – filter where ticker name is greater than or equal to given value (alphabeti-
cally)

• execution_date_lt – filter where execution date is less than given value

• execution_date_lte – filter where execution date is less than or equal to given value

• execution_date_gt – filter where execution date is greater than given value

• execution_date_gte – filter where execution date is greater than or equal to given value

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_market_holidays(raw_response: bool = False)
Get upcoming market holidays and their open/close times - Async method Official Docs

Parameters
raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

13.4. References Clients 159

https://polygon.io/docs/stocks/get_v1_marketstatus_upcoming

polygon, Release 1.0.8

async get_market_status(raw_response: bool = False)
Get the current trading status of the exchanges and overall financial markets - Async method Official Docs

Parameters
raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_conditions(asset_class=None, data_type=None, condition_id=None, sip=None, order=None,
limit: int = 50, sort='name', raw_response: bool = False)

List all conditions that Polygon.io uses - Async method Official Docs

Parameters
• asset_class – Filter for conditions within a given asset class. See polygon.enums.
AssetClass for choices. Defaults to all assets.

• data_type – Filter by data type. See polygon.enums.ConditionsDataType for
choices. defaults to all.

• condition_id – Filter for conditions with a given ID

• sip – Filter by SIP. If the condition contains a mapping for that SIP, the condition will be
returned.

• order – Order results. See polygon.enums.SortOrder for choices.

• limit – limit the number of results. defaults to 50.

• sort – Sort field used for ordering. Defaults to ‘name’. See polygon.enums.
ConditionsSortKey for choices.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_exchanges(asset_class=None, locale=None, raw_response: bool = False)
List all exchanges that Polygon.io knows about - Async method Official Docs

Parameters
• asset_class – filter by asset class. See polygon.enums.AssetClass for choices.

• locale – Filter by locale name. See polygon.enums.Locale

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

160 Chapter 13. Library Interface Documentation

https://polygon.io/docs/stocks/get_v1_marketstatus_now
https://polygon.io/docs/stocks/get_v3_reference_conditions
https://polygon.io/docs/stocks/get_v3_reference_exchanges

polygon, Release 1.0.8

13.5 Forex Clients

13.5.1 Forex Sync Client

class polygon.forex.forex_api.SyncForexClient(api_key: str, connect_timeout: int = 10, read_timeout:
int = 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This class implements all the Forex REST endpoints. Note that you should always import names from top level.
eg: from polygon import ForexClient or import polygon (which allows you to access all names easily)

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10)
Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

get_historic_forex_ticks(from_symbol: str, to_symbol: str, date, offset: Optional[Union[str, int]] =
None, limit: int = 500, raw_response: bool = False)

Get historic trade ticks for a forex currency pair. Official Docs

Parameters
• from_symbol – The “from” symbol of the forex currency pair.

• to_symbol – The “to” symbol of the forex currency pair.

• date – The date/day of the historic ticks to retrieve. Could be datetime, date or string
YYYY-MM-DD

• offset – The timestamp offset, used for pagination. This is the offset at which to start
the results. Using the timestamp of the last result as the offset will give you the next page
of results. I’m thinking about a good way to implement this type of pagination in the lib
which doesn’t have a next_url in the response attributes.

• limit – Limit the size of the response, max 10000. Default 500

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_quotes(symbol: str, timestamp: Optional[int] = None, order=None, sort=None, limit: int = 5000,
timestamp_lt=None, timestamp_lte=None, timestamp_gt=None, timestamp_gte=None,
all_pages: bool = False, max_pages: Optional[int] = None, merge_all_pages: bool = True,
verbose: bool = False, raw_page_responses: bool = False, raw_response: bool = False)

13.5. Forex Clients 161

https://polygon.io/docs/forex/get_v1_historic_forex__from___to___date

polygon, Release 1.0.8

Get NBBO Quotes for a forex ticker symbol in a given time range. Official Docs

Parameters
• symbol – The ticker symbol you want quotes for. eg: C:EUR-USD. you can pass with or

without prefix C:

• timestamp – Query by trade timestamp. Could be datetime or date or string
YYYY-MM-DD or a nanosecond timestamp

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to
None

• sort – field key to sort against. Defaults to None. see polygon.enums.
ForexQuotesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_last_quote(from_symbol: str, to_symbol: str, raw_response: bool = False)
Get the last trade tick for a forex currency pair. Official Docs

162 Chapter 13. Library Interface Documentation

https://polygon.io/docs/forex/get_v3_quotes__fxticker
hhttps://polygon.io/docs/forex/get_v1_last_quote_currencies__from___to

polygon, Release 1.0.8

Parameters
• from_symbol – The “from” symbol of the forex currency pair.

• to_symbol – The “to” symbol of the forex currency pair.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_aggregate_bars(symbol: str, from_date, to_date, multiplier: int = 1, timespan='day', adjusted: bool =
True, sort='asc', limit: int = 5000, full_range: bool = False, run_parallel: bool =
True, max_concurrent_workers: int = 10, warnings: bool = True, high_volatility:
bool = False, raw_response: bool = False)

Get aggregate bars for a forex pair over a given date range in custom time window sizes. For example, if
timespan = ‘minute’ and multiplier = ‘5’ then 5-minute bars will be returned. Official Docs

Parameters
• symbol – The ticker symbol of the forex pair. eg: C:EURUSD. You can supply with or

without prefix C:

• from_date – The start of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• multiplier – The size of the timespan multiplier

• timespan – The size of the time window. Defaults to day candles. see polygon.enums.
Timespan for choices

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• sort – Sort the results by timestamp. see polygon.enums.SortOrder for available
choices. Defaults to asc which is oldest at the top.

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it
will run an internal ThreadPool to get the responses. This is fine to do if you are not running
your own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the
async version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to
your cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. De-
faults to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration

13.5. Forex Clients 163

https://polygon.io/docs/forex/get_v2_aggs_ticker__forexticker__range__multiplier___timespan___from___to

polygon, Release 1.0.8

(eg SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t
miss any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If full_range=True, will return a single list with all the candles in it.

get_grouped_daily_bars(date, adjusted: bool = True, raw_response: bool = False)
Get the daily open, high, low, and close (OHLC) for the entire forex markets. Official Docs

Parameters
• date – The date for the aggregate window. Could be datetime, date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_previous_close(symbol: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s open, high, low, and close (OHLC) for the specified forex pair. Official Docs

Parameters
• symbol – The ticker symbol of the forex pair.

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_snapshot_all(symbols: list, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for all traded
forex symbols Official Docs

Parameters
• symbols – A list of tickers to get snapshots for.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

164 Chapter 13. Library Interface Documentation

https://polygon.io/docs/forex/get_v2_aggs_grouped_locale_global_market_fx__date
https://polygon.io/docs/forex/get_v2_aggs_ticker__forexticker__prev
https://polygon.io/docs/forex/get_v2_snapshot_locale_global_markets_forex_tickers

polygon, Release 1.0.8

get_snapshot(symbol: str, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for a single
traded forex symbol. Official Docs

Parameters
• symbol – Symbol of the forex pair. eg: C:EURUSD. You can supply with or without prefix
C:.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_gainers_and_losers(direction='gainers', raw_response: bool = False)
Get the current top 20 gainers or losers of the day in forex markets. Official docs

Parameters
• direction – The direction of the snapshot results to return. See polygon.enums.
SnapshotDirection for available choices. Defaults to Gainers.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

real_time_currency_conversion(from_symbol: str, to_symbol: str, amount: float, precision: int = 2,
raw_response: bool = False)

Get currency conversions using the latest market conversion rates. Note than you can convert in both
directions. For example USD to CAD or CAD to USD. Official Docs

Parameters
• from_symbol – The “from” symbol of the pair.

• to_symbol – The “to” symbol of the pair.

• amount – The amount to convert,

• precision – The decimal precision of the conversion. Defaults to 2 which is 2 decimal
places accuracy.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

13.5. Forex Clients 165

https://polygon.io/docs/forex/get_v2_snapshot_locale_global_markets_forex_tickers__ticker
https://polygon.io/docs/forex/get_v2_snapshot_locale_global_markets_forex__direction
https://polygon.io/docs/forex/get_v1_conversion__from___to

polygon, Release 1.0.8

13.5.2 Forex Async Client

class polygon.forex.forex_api.AsyncForexClient(api_key: str, connect_timeout: int = 10, read_timeout:
int = 10, pool_timeout: int = 10, max_connections:
Optional[int] = None, max_keepalive: Optional[int] =
None, write_timeout: int = 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This class implements all the Forex REST endpoints. Note that you should always import names from top level.
eg: from polygon import ForexClient or import polygon (which allows you to access all names easily)

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10, pool_timeout: int = 10,
max_connections: Optional[int] = None, max_keepalive: Optional[int] = None, write_timeout: int
= 10)

Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS.
Do NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults
to no limit. Do NOT change if you’re unsure of the applications.

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

async get_historic_forex_ticks(from_symbol: str, to_symbol: str, date, offset: Optional[Union[str,
int]] = None, limit: int = 500, raw_response: bool = False)

Get historic trade ticks for a forex currency pair - Async method. Official Docs

Parameters
• from_symbol – The “from” symbol of the forex currency pair.

• to_symbol – The “to” symbol of the forex currency pair.

• date – The date/day of the historic ticks to retrieve. Could be datetime, date or string
YYYY-MM-DD

• offset – The timestamp offset, used for pagination. This is the offset at which to start
the results. Using the timestamp of the last result as the offset will give you the next page
of results. I’m thinking about a good way to implement this type of pagination in the lib
which doesn’t have a next_url in the response attributes.

166 Chapter 13. Library Interface Documentation

https://polygon.io/docs/forex/get_v1_historic_forex__from___to___date

polygon, Release 1.0.8

• limit – Limit the size of the response, max 10000. Default 500

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_quotes(symbol: str, timestamp: Optional[int] = None, order=None, sort=None, limit: int =
5000, timestamp_lt=None, timestamp_lte=None, timestamp_gt=None,
timestamp_gte=None, all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False, raw_page_responses: bool =
False, raw_response: bool = False)

Get NBBO Quotes for a forex ticker symbol in a given time range. Official Docs

Parameters
• symbol – The ticker symbol you want quotes for. eg: C:EUR-USD. you can pass with or

without prefix C:

• timestamp – Query by trade timestamp. Could be datetime or date or string
YYYY-MM-DD or a nanosecond timestamp

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to
None

• sort – field key to sort against. Defaults to None. see polygon.enums.
ForexQuotesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

13.5. Forex Clients 167

https://polygon.io/docs/forex/get_v3_quotes__fxticker

polygon, Release 1.0.8

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_last_quote(from_symbol: str, to_symbol: str, raw_response: bool = False)
Get the last trade tick for a forex currency pair - Async method Official Docs

Parameters
• from_symbol – The “from” symbol of the forex currency pair.

• to_symbol – The “to” symbol of the forex currency pair.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_aggregate_bars(symbol: str, from_date, to_date, multiplier: int = 1, timespan='day', adjusted:
bool = True, sort='asc', limit: int = 5000, full_range: bool = False,
run_parallel: bool = True, max_concurrent_workers: int = 10, warnings:
bool = True, high_volatility: bool = False, raw_response: bool = False)

Get aggregate bars for a forex pair over a given date range in custom time window sizes. For example, if
timespan = ‘minute’ and multiplier = ‘5’ then 5-minute bars will be returned. Official Docs

Parameters
• symbol – The ticker symbol of the forex pair. eg: C:EURUSD. You can supply with or

without prefix C:

• from_date – The start of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• multiplier – The size of the timespan multiplier

• timespan – The size of the time window. Defaults to day candles. see polygon.enums.
Timespan for choices

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• sort – Sort the results by timestamp. see polygon.enums.SortOrder for available
choices. Defaults to asc which is oldest at the top.

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

168 Chapter 13. Library Interface Documentation

https://polygon.io/docs/forex/get_v1_last_quote_currencies__from___to
https://polygon.io/docs/forex/get_v2_aggs_ticker__forexticker__range__multiplier___timespan___from___to

polygon, Release 1.0.8

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it
will run an internal ThreadPool to get the responses. This is fine to do if you are not running
your own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the
async version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to
your cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. De-
faults to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration
(eg SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t
miss any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If full_range=True, will return a single list with all the candles in it.

async get_grouped_daily_bars(date, adjusted: bool = True, raw_response: bool = False)
Get the daily open, high, low, and close (OHLC) for the entire forex markets - Async method Official Docs

Parameters
• date – The date for the aggregate window. Could be datetime, date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_previous_close(symbol: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s open, high, low, and close (OHLC) for the specified forex pair - Async method
Official Docs

Parameters
• symbol – The ticker symbol of the forex pair.

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

13.5. Forex Clients 169

https://polygon.io/docs/forex/get_v2_aggs_grouped_locale_global_market_fx__date
https://polygon.io/docs/forex/get_v2_aggs_ticker__forexticker__prev

polygon, Release 1.0.8

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_snapshot_all(symbols: list, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for all traded
forex symbols - Async method Official Docs

Parameters
• symbols – A list of tickers to get snapshots for.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_snapshot(symbol: str, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for a single
traded forex symbol - Async method Official Docs

Parameters
• symbol – Symbol of the forex pair. eg: C:EURUSD. You can supply with or without prefix
C:.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_gainers_and_losers(direction='gainers', raw_response: bool = False)
Get the current top 20 gainers or losers of the day in forex markets. Official docs

Parameters
• direction – The direction of the snapshot results to return. See polygon.enums.
SnapshotDirection for available choices. Defaults to Gainers.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async real_time_currency_conversion(from_symbol: str, to_symbol: str, amount: float, precision: int
= 2, raw_response: bool = False)

Get currency conversions using the latest market conversion rates. Note than you can convert in both
directions. For example USD to CAD or CAD to USD - Async method Official Docs

Parameters
• from_symbol – The “from” symbol of the pair.

170 Chapter 13. Library Interface Documentation

https://polygon.io/docs/forex/get_v2_snapshot_locale_global_markets_forex_tickers
https://polygon.io/docs/forex/get_v2_snapshot_locale_global_markets_forex_tickers__ticker
https://polygon.io/docs/forex/get_v2_snapshot_locale_global_markets_forex__direction
https://polygon.io/docs/forex/get_v1_conversion__from___to

polygon, Release 1.0.8

• to_symbol – The “to” symbol of the pair.

• amount – The amount to convert,

• precision – The decimal precision of the conversion. Defaults to 2 which is 2 decimal
places accuracy.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

13.6 Crypto Clients

13.6.1 Crypto Sync Client

class polygon.crypto.crypto_api.SyncCryptoClient(api_key: str, connect_timeout: int = 10,
read_timeout: int = 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This class implements all the crypto REST endpoints. Note that you should always import names from top
level. eg: from polygon import CryptoClient or import polygon (which allows you to access all names
easily)

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10)
Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for date to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

get_historic_trades(from_symbol: str, to_symbol: str, date, offset: Optional[Union[str, int]] = None,
limit: int = 500, raw_response: bool = False)

Get historic trade ticks for a cryptocurrency pair. Official Docs

Parameters
• from_symbol – The “from” symbol of the crypto pair.

• to_symbol – The “to” symbol of the crypto pair.

• date – The date/day of the historic ticks to retrieve. Could be datetime, date or string
YYYY-MM-DD

• offset – The timestamp offset, used for pagination. This is the offset at which to start the
results. Using the timestamp of the last result as the offset will give you the next page of

13.6. Crypto Clients 171

https://polygon.io/docs/crypto/get_v1_historic_crypto__from___to___date

polygon, Release 1.0.8

results. I’m trying to think of a good way to implement pagination in the library for these
endpoints which do not return a next_url attribute.

• limit – Limit the size of the response, max 10000. Default 500

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_trades(symbol: str, timestamp: Optional[int] = None, order=None, sort=None, limit: int = 5000,
timestamp_lt=None, timestamp_lte=None, timestamp_gt=None, timestamp_gte=None,
all_pages: bool = False, max_pages: Optional[int] = None, merge_all_pages: bool = True,
verbose: bool = False, raw_page_responses: bool = False, raw_response: bool = False)

Get trades for a crypto ticker symbol in a given time range. Official Docs

Parameters
• symbol – The ticker symbol you want trades for. eg X:BTC-USD. you can pass with or

without the prefix C:

• timestamp – Query by trade timestamp. Could be datetime or date or string
YYYY-MM-DD or a nanosecond timestamp

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to
None

• sort – field key to sort against. Defaults to None. see polygon.enums.
CryptoTradesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

172 Chapter 13. Library Interface Documentation

https://polygon.io/docs/crypto/get_v3_trades__cryptoticker

polygon, Release 1.0.8

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

get_last_trade(from_symbol: str, to_symbol: str, raw_response: bool = False)
Get the last trade tick for a cryptocurrency pair. Official Docs

Parameters
• from_symbol – The “from” symbol of the pair.

• to_symbol – The “to” symbol of the pair.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_daily_open_close(from_symbol: str, to_symbol: str, date, adjusted: bool = True, raw_response: bool
= False)

Get the open, close prices of a cryptocurrency symbol on a certain day. Official Docs:

Parameters
• from_symbol – The “from” symbol of the pair.

• to_symbol – The “to” symbol of the pair.

• date – The date of the requested open/close. Could be datetime, date or string
YYYY-MM-DD.

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_aggregate_bars(symbol: str, from_date, to_date, multiplier: int = 1, timespan='day', adjusted: bool =
True, sort='asc', limit: int = 5000, full_range: bool = False, run_parallel: bool =
True, max_concurrent_workers: int = 10, warnings: bool = True, high_volatility:
bool = False, raw_response: bool = False)

Get aggregate bars for a cryptocurrency pair over a given date range in custom time window sizes. For
example, if timespan=‘minute’ and multiplier=‘5’ then 5-minute bars will be returned. Official
Docs

13.6. Crypto Clients 173

https://polygon.io/docs/crypto/get_v1_last_crypto__from___to
https://polygon.io/docs/crypto/get_v1_open-close_crypto__from___to___date
https://polygon.io/docs/crypto/get_v2_aggs_ticker__cryptoticker__range__multiplier___timespan___from___to
https://polygon.io/docs/crypto/get_v2_aggs_ticker__cryptoticker__range__multiplier___timespan___from___to

polygon, Release 1.0.8

Parameters
• symbol – The ticker symbol of the currency pair. eg: X:BTCUSD. You can specify with or

without prefix X:

• from_date – The start of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• multiplier – The size of the timespan multiplier

• timespan – The size of the time window. Defaults to day candles. see polygon.enums.
Timespan for choices

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• sort – Order of sorting the results. See polygon.enums.SortOrder for available
choices. Defaults to asc (oldest at the top)

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it
will run an internal ThreadPool to get the responses. This is fine to do if you are not running
your own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the
async version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to
your cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. De-
faults to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration
(eg SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t
miss any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If full_range=True, will return a single list with all the candles in it.

get_grouped_daily_bars(date, adjusted: bool = True, raw_response: bool = False)
Get the daily open, high, low, and close (OHLC) for the entire cryptocurrency market. Official Docs

Parameters
• date – The date for the aggregate window. Could be datetime, date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

174 Chapter 13. Library Interface Documentation

https://polygon.io/docs/crypto/get_v2_aggs_grouped_locale_global_market_crypto__date

polygon, Release 1.0.8

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_previous_close(symbol: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s open, high, low, and close (OHLC) for the specified cryptocurrency pair. Official
Docs

Parameters
• symbol – The ticker symbol of the currency pair. eg: X:BTCUSD. You can specify with or

without the prefix X:

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_snapshot_all(symbols: list, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for all traded
cryptocurrency symbols Official Docs

Parameters
• symbols – A list of tickers to get snapshots for.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_snapshot(symbol: str, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for a single
traded cryptocurrency symbol. Official Docs

Parameters
• symbol – Symbol of the currency pair. eg: X:BTCUSD. you can specify with or without

prefix X:

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

13.6. Crypto Clients 175

https://polygon.io/docs/crypto/get_v2_aggs_ticker__cryptoticker__prev
https://polygon.io/docs/crypto/get_v2_aggs_ticker__cryptoticker__prev
hhttps://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers
https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers__ticker

polygon, Release 1.0.8

get_gainers_and_losers(direction='gainers', raw_response: bool = False)
Get the current top 20 gainers or losers of the day in cryptocurrency markets. Official docs

Parameters
• direction – The direction of the snapshot results to return. See polygon.enums.
SnapshotDirection for available choices. Defaults to Gainers.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

get_level2_book(symbol: str, raw_response: bool = False)
Get the current level 2 book of a single ticker. This is the combined book from all of the exchanges. Official
Docs

Parameters
• symbol – The cryptocurrency ticker. eg: X:BTCUSD. You can specify with or without the

prefix `X:

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

13.6.2 Crypto Async Client

class polygon.crypto.crypto_api.AsyncCryptoClient(api_key: str, connect_timeout: int = 10,
read_timeout: int = 10, pool_timeout: int = 10,
max_connections: Optional[int] = None,
max_keepalive: Optional[int] = None,
write_timeout: int = 10)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

This class implements all the crypto REST endpoints. Note that you should always import names from top
level. eg: from polygon import CryptoClient or import polygon (which allows you to access all names
easily)

__init__(api_key: str, connect_timeout: int = 10, read_timeout: int = 10, pool_timeout: int = 10,
max_connections: Optional[int] = None, max_keepalive: Optional[int] = None, write_timeout: int
= 10)

Initiates a Client to be used to access all the endpoints.

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• connect_timeout – The connection timeout in seconds. Defaults to 10. basically the
number of seconds to wait for a connection to be established. Raises a ConnectTimeout
if unable to connect within specified time limit.

176 Chapter 13. Library Interface Documentation

https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto__direction
https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers__ticker__book
https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers__ticker__book

polygon, Release 1.0.8

• read_timeout – The read timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be received. Raises a ReadTimeout if unable to connect within
the specified time limit.

• pool_timeout – The pool timeout in seconds. Defaults to 10. Basically the number of
seconds to wait while trying to get a connection from connection pool. Do NOT change if
you’re unsure of what it implies

• max_connections – Max number of connections in the pool. Defaults to NO LIMITS.
Do NOT change if you’re unsure of application

• max_keepalive – max number of allowable keep alive connections in the pool. Defaults
to no limit. Do NOT change if you’re unsure of the applications.

• write_timeout – The write timeout in seconds. Defaults to 10. basically the number of
seconds to wait for data to be written/posted. Raises a WriteTimeout if unable to connect
within the specified time limit.

async get_historic_trades(from_symbol: str, to_symbol: str, date, offset: Optional[Union[str, int]] =
None, limit: int = 500, raw_response: bool = False)

Get historic trade ticks for a cryptocurrency pair - Async method. Official Docs

Parameters
• from_symbol – The “from” symbol of the crypto pair.

• to_symbol – The “to” symbol of the crypto pair.

• date – The date/day of the historic ticks to retrieve. Could be datetime, date or string
YYYY-MM-DD

• offset – The timestamp offset, used for pagination. This is the offset at which to start the
results. Using the timestamp of the last result as the offset will give you the next page of
results. I’m trying to think of a good way to implement pagination in the library for these
endpoints which do not return a next_url attribute.

• limit – Limit the size of the response, max 10000. Default 500

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_trades(symbol: str, timestamp: Optional[int] = None, order=None, sort=None, limit: int =
5000, timestamp_lt=None, timestamp_lte=None, timestamp_gt=None,
timestamp_gte=None, all_pages: bool = False, max_pages: Optional[int] = None,
merge_all_pages: bool = True, verbose: bool = False, raw_page_responses: bool =
False, raw_response: bool = False)

Get trades for a crypto ticker symbol in a given time range. Official Docs

Parameters
• symbol – The ticker symbol you want trades for. eg X:BTC-USD. you can pass with or

without the prefix C:

• timestamp – Query by trade timestamp. Could be datetime or date or string
YYYY-MM-DD or a nanosecond timestamp

13.6. Crypto Clients 177

https://polygon.io/docs/crypto/get_v1_historic_crypto__from___to___date
https://polygon.io/docs/crypto/get_v3_trades__cryptoticker

polygon, Release 1.0.8

• order – sort order. see polygon.enums.SortOrder for available choices. defaults to
None

• sort – field key to sort against. Defaults to None. see polygon.enums.
CryptoTradesSort for choices

• limit – Limit the size of the response, max 50000 and default 5000.

• timestamp_lt – return results where timestamp is less than the given value. Can be date
or date string or nanosecond timestamp

• timestamp_lte – return results where timestamp is less than/equal to the given value.
Can be date or date string or nanosecond timestamp

• timestamp_gt – return results where timestamp is greater than the given value. Can be
date or date string or nanosecond timestamp

• timestamp_gte – return results where timestamp is greater than/equal to the given value.
Can be date or date string or nanosecond timestamp

• all_pages – Whether to paginate through next/previous pages internally. Defaults to
False. If set to True, it will try to paginate through all pages and merge all pages inter-
nally for you.

• max_pages – how many pages to fetch. Defaults to None which fetches all available pages.
Change to an integer to fetch at most that many pages. This param is only considered if
all_pages is set to True

• merge_all_pages – If this is True, returns a single merged response having all the data.
If False, returns a list of all pages received. The list can be either a list of response objects
or decoded data itself, controlled by parameter raw_page_responses. This argument is
Only considered if all_pages is set to True. Default: True

• verbose – Set to True to print status messages during the pagination process. Defaults to
False.

• raw_page_responses – If this is true, the list of pages will be a list of corresponding
Response objects. Else, it will be a list of actual data for pages. This parameter is only
considered if merge_all_pages is set to False. Default: False

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. This is ignored if pagination is set to True.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If pagination is set to True, will return a merged response of all pages for
convenience.

async get_last_trade(from_symbol: str, to_symbol: str, raw_response: bool = False)
Get the last trade tick for a cryptocurrency pair - Async method Official Docs

Parameters
• from_symbol – The “from” symbol of the pair.

• to_symbol – The “to” symbol of the pair.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

178 Chapter 13. Library Interface Documentation

https://polygon.io/docs/crypto/get_v1_last_crypto__from___to

polygon, Release 1.0.8

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_daily_open_close(from_symbol: str, to_symbol: str, date, adjusted: bool = True,
raw_response: bool = False)

Get the open, close prices of a cryptocurrency symbol on a certain day - Async method Official Docs:

Parameters
• from_symbol – The “from” symbol of the pair.

• to_symbol – The “to” symbol of the pair.

• date – The date of the requested open/close. Could be datetime, date or string
YYYY-MM-DD.

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_aggregate_bars(symbol: str, from_date, to_date, multiplier: int = 1, timespan='day', adjusted:
bool = True, sort='asc', limit: int = 5000, full_range: bool = False,
run_parallel: bool = True, max_concurrent_workers: int = 10, warnings:
bool = True, high_volatility: bool = False, raw_response: bool = False)

Get aggregate bars for a cryptocurrency pair over a given date range in custom time window sizes. For
example, if timespan=‘minute’ and multiplier=‘5’ then 5-minute bars will be returned. Official
Docs

Parameters
• symbol – The ticker symbol of the currency pair. eg: X:BTCUSD. You can specify with or

without prefix X:

• from_date – The start of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• to_date – The end of the aggregate time window. Could be datetime, date or string
YYYY-MM-DD

• multiplier – The size of the timespan multiplier

• timespan – The size of the time window. Defaults to day candles. see polygon.enums.
Timespan for choices

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• sort – Order of sorting the results. See polygon.enums.SortOrder for available
choices. Defaults to asc (oldest at the top)

• limit – Limits the number of base aggregates queried to create the aggregate results. Max
50000 and Default 5000.

13.6. Crypto Clients 179

https://polygon.io/docs/crypto/get_v1_open-close_crypto__from___to___date
https://polygon.io/docs/crypto/get_v2_aggs_ticker__cryptoticker__range__multiplier___timespan___from___to
https://polygon.io/docs/crypto/get_v2_aggs_ticker__cryptoticker__range__multiplier___timespan___from___to

polygon, Release 1.0.8

• full_range – Default False. If set to True, it will get the ENTIRE range you specify and
merge all the responses and return ONE single list with all data in it. You can control its
behavior with the next few arguments.

• run_parallel – Only considered if full_range=True. If set to true (default True), it
will run an internal ThreadPool to get the responses. This is fine to do if you are not running
your own ThreadPool. If you have many tickers to get aggs for, it’s better to either use the
async version of it OR set this to False and spawn threads for each ticker yourself.

• max_concurrent_workers – Only considered if run_parallel=True. Defaults to
your cpu cores * 5. controls how many worker threads to use in internal ThreadPool

• warnings – Set to False to disable printing warnings if any when fetching the aggs. De-
faults to True.

• high_volatility – Specifies whether the symbol/security in question is highly volatile
which just means having a very high number of trades or being traded for a high duration
(eg SPY, Bitcoin) If set to True, the lib will use a smaller chunk of time to ensure we don’t
miss any data due to 50k candle limit. Defaults to False.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary. Will be ignored if full_range=True

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object. If full_range=True, will return a single list with all the candles in it.

async get_grouped_daily_bars(date, adjusted: bool = True, raw_response: bool = False)
Get the daily open, high, low, and close (OHLC) for the entire cryptocurrency market - Async method
Official Docs

Parameters
• date – The date for the aggregate window. Could be datetime, date or string
YYYY-MM-DD

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_previous_close(symbol: str, adjusted: bool = True, raw_response: bool = False)
Get the previous day’s open, high, low, and close (OHLC) for the specified cryptocurrency pair - Async
method Official Docs

Parameters
• symbol – The ticker symbol of the currency pair. eg: X:BTCUSD. You can specify with or

without the prefix X:

• adjusted – Whether or not the results are adjusted for splits. By default, results are ad-
justed. Set this to False to get results that are NOT adjusted for splits.

180 Chapter 13. Library Interface Documentation

https://polygon.io/docs/crypto/get_v2_aggs_grouped_locale_global_market_crypto__date
https://polygon.io/docs/crypto/get_v2_aggs_ticker__cryptoticker__prev

polygon, Release 1.0.8

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_snapshot_all(symbols: list, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for all traded
cryptocurrency symbols - Async method Official Docs

Parameters
• symbols – A list of tickers to get snapshots for.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_snapshot(symbol: str, raw_response: bool = False)
Get the current minute, day, and previous day’s aggregate, as well as the last trade and quote for a single
traded cryptocurrency symbol - Async method Official Docs

Parameters
• symbol – Symbol of the currency pair. eg: X:BTCUSD. you can specify with or without

prefix X:

• raw_response – Whether or not to return the Response Object. Useful for when you need
to say check the status code or inspect the headers. Defaults to False which returns the json
decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_gainers_and_losers(direction='gainers', raw_response: bool = False)
Get the current top 20 gainers or losers of the day in cryptocurrency markets - Async method Official docs

Parameters
• direction – The direction of the snapshot results to return. See polygon.enums.
SnapshotDirection for available choices. Defaults to Gainers.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

async get_level2_book(symbol: str, raw_response: bool = False)
Get the current level 2 book of a single ticker. combined book from all of the exchanges - Async method
Official Docs

Parameters

13.6. Crypto Clients 181

https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers
https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers__ticker
https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto__direction
https://polygon.io/docs/crypto/get_v2_snapshot_locale_global_markets_crypto_tickers__ticker__book

polygon, Release 1.0.8

• symbol – The cryptocurrency ticker. eg: X:BTCUSD. You can specify with or without the
prefix `X:.

• raw_response – Whether or not to return the Response Object. Useful for when you
need to say check the status code or inspect the headers. Defaults to False which returns
the json decoded dictionary.

Returns
A JSON decoded Dictionary by default. Make raw_response=True to get underlying re-
sponse object

13.7 Callback Streamer Client (Sync)

class polygon.streaming.streaming.StreamClient(api_key: str, cluster, host='socket.polygon.io',
on_message=None, on_close=None, on_error=None,
enable_connection_logs: bool = False)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

Note that this is callback based stream client which is suitable for threaded/multi-processed applications. If you
need to stream using an asyncio based stream client, see Async Streamer Client.

This class implements all the websocket endpoints. Note that you should always import names from top level. eg:
from polygon import StreamClient or import polygon (which allows you to access all names easily)

Creating the client is as simple as: client = StreamClient('MY_API_KEY', 'other_options')

Once you have the client, you can call its methods to subscribe/unsubscribe to streams, change handlers and
process messages. All methods have sane default values and almost everything can be customized.

Type Hinting tells you what data type a parameter is supposed to be. You should always use enums for most
parameters to avoid supplying error prone values.

Take a look at the Official documentation to get an idea of the stream, data formatting for messages and related
useful stuff.

__init__(api_key: str, cluster, host='socket.polygon.io', on_message=None, on_close=None,
on_error=None, enable_connection_logs: bool = False)

Initializes the callback function based stream client Official Docs

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• cluster – Which market/cluster to connect to. See polygon.enums.StreamCluster
for choices. NEVER connect to the same cluster again if there is an existing stream con-
nected to it. The existing connection would be dropped and new one will be established.
You can have up to 4 concurrent streams connected to 4 different clusters.

• host – Host url to connect to. Default is real time. See polygon.enums.StreamHost for
choices.

• on_message – The function to be called when data is received. This is primary function
you’ll write to process the data from the stream. The function should accept one and only
one arg (message). Default handler is _default_on_msg().

• on_close – The function to be called when stream is closed. Function should accept two
args (close_status_code, close_message). Default handler is _default_on_close()

182 Chapter 13. Library Interface Documentation

https://polygon.io/docs/websockets/getting-started
https://polygon.io/docs/websockets/getting-started

polygon, Release 1.0.8

• on_error – Function to be called when an error is encountered. Function should accept
one arg (exception object). Default handler is _default_on_error()

• enable_connection_logs – Whether or not to print debug info related to the stream
connection. Helpful for debugging.

_start_stream(ping_interval: int = 21, ping_timeout: int = 20, ping_payload: str = '',
skip_utf8_validation: bool = True)

Starts the Stream Event Loop. The loop is infinite and will continue to run until the stream is termi-
nated, either manually or due to an exception. This method is for internal use only. you should always use
start_stream_thread() to start the stream.

Parameters
• ping_interval – client would send a ping every specified number of seconds to server

to keep connection alive. Set to 0 to disable pinging. Defaults to 21 seconds

• ping_timeout – Timeout in seconds if a pong (response to ping from server) is not re-
ceived. The Stream is terminated as it is considered to be dead if no pong is received within
the specified timeout. default: 20 seconds

• ping_payload – The option message to be sent with the ping. Better to leave it empty
string.

• skip_utf8_validation – Whether to skip utf validation of messages. Defaults to True.
Setting it to False may result in performance downgrade

Returns
None

start_stream_thread(ping_interval: int = 21, ping_timeout: int = 20, ping_payload: str = '',
skip_utf8_validation: bool = True)

Starts the Stream. This will not block the main thread and it spawns the streamer in its own thread.

Parameters
• ping_interval – client would send a ping every specified number of seconds to server

to keep connection alive. Set to 0 to disable pinging. Defaults to 21 seconds

• ping_timeout – Timeout in seconds if a pong (response to ping from server) is not re-
ceived. The Stream is terminated as it is considered to be dead if no pong is received within
the specified timeout. default: 20 seconds

• ping_payload – The option message to be sent with the ping. Better to leave it empty
string.

• skip_utf8_validation – Whether to skip utf validation of messages. Defaults to True.
Setting it to False may result in performance downgrade

Returns
None

close_stream(*args, **kwargs)
Close the websocket connection. Wait for thread to finish if running.

_authenticate()

Authenticates the client with the server using API key. Internal function, not meant to be called directly by
users.

Returns
None

13.7. Callback Streamer Client (Sync) 183

https://websocket-client.readthedocs.io/en/latest/faq.html#why-is-this-library-slow
https://websocket-client.readthedocs.io/en/latest/faq.html#why-is-this-library-slow

polygon, Release 1.0.8

_modify_sub(symbols=None, action='subscribe', _prefix='T.', force_uppercase_symbols: bool = True)
Internal Function to send subscribe or unsubscribe requests to websocket. You should prefer using the
corresponding methods to subscribe or unsubscribe to stream.

Parameters
• symbols – The list of symbols to apply the actions to.

• action – Defaults to subscribe which subscribes to requested stream. Change to unsub-
scribe to remove an existing subscription.

• _prefix – prefix of the stream service. See polygon.enums.StreamServicePrefix
for choices.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

subscribe_stock_trades(symbols: Optional[list] = None, force_uppercase_symbols: bool = True)
Stream real-time trades for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_stock_trades(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

subscribe_stock_quotes(symbols: Optional[list] = None, force_uppercase_symbols: bool = True)
Stream real-time Quotes for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_stock_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

subscribe_stock_minute_aggregates(symbols: Optional[list] = None, force_uppercase_symbols: bool
= True)

Stream real-time minute aggregates for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

184 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

Returns
None

unsubscribe_stock_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

subscribe_stock_second_aggregates(symbols: Optional[list] = None, force_uppercase_symbols: bool
= True)

Stream real-time second aggregates for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_stock_second_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

subscribe_stock_limit_up_limit_down(symbols: Optional[list] = None, force_uppercase_symbols:
bool = True)

Stream real-time LULD events for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_stock_limit_up_limit_down(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

subscribe_stock_imbalances(symbols: Optional[list] = None, force_uppercase_symbols: bool = True)
Stream real-time Imbalance Events for given stock ticker symbol(s).

Parameters
• symbols – A list of tickers. Default is * which subscribes to ALL tickers in the market

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_stock_imbalances(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

subscribe_option_trades(symbols: Optional[list] = None, force_uppercase_symbols: bool = True)
Stream real-time Options Trades for given Options contract.

Parameters
• symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market.

you can pass with or without the prefix O:

13.7. Callback Streamer Client (Sync) 185

polygon, Release 1.0.8

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_option_trades(symbols: Optional[list] = None)
Unsubscribe real-time Options Trades for given Options contract.

Parameters
symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market.
you can pass with or without the prefix O:

Returns
None

subscribe_option_quotes(symbols: Optional[list] = None, force_uppercase_symbols: bool = True)
Stream real-time Options Quotes for given Options contract.

Parameters
• symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market.

you can pass with or without the prefix O:

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_option_quotes(symbols: Optional[list] = None)
Unsubscribe real-time Options Quotes for given Options contract.

Parameters
symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market.
you can pass with or without the prefix O:

Returns
None

subscribe_option_minute_aggregates(symbols: Optional[list] = None, force_uppercase_symbols: bool
= True)

Stream real-time Options Minute Aggregates for given Options contract(s).

Parameters
• symbols – A list of symbols. Default is * which subscribes to ALL tickers in the market.

you can pass with or without the prefix O:

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_option_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe real-time Options Minute aggregates for given Options contract.

Parameters
symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market.
you can pass with or without the prefix O:

186 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

Returns
None

subscribe_option_second_aggregates(symbols: Optional[list] = None, force_uppercase_symbols: bool
= True)

Stream real-time Options Second Aggregates for given Options contract(s).

Parameters
• symbols – A list of symbols. Default is * which subscribes to ALL tickers in the market.

you can pass with or without the prefix O:

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_option_second_aggregates(symbols: Optional[list] = None)
Unsubscribe real-time Options Second Aggregates for given Options contract.

Parameters
symbols – A list of symbols. Default is * which subscribes to ALL symbols in the market.
you can pass with or without the prefix O:

Returns
None

subscribe_forex_quotes(symbols: Optional[list] = None, force_uppercase_symbols: bool = True)
Stream real-time forex quotes for given forex pair(s).

Parameters
• symbols – A list of forex tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from/to. For example: USD/CNH.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_forex_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

Parameters
symbols – A list of forex tickers. Default is * which unsubscribes to ALL tickers in the
market. each Ticker must be in format: from/to. For example: USD/CNH.

subscribe_forex_minute_aggregates(symbols: Optional[list] = None, force_uppercase_symbols: bool
= True)

Stream real-time forex Minute Aggregates for given forex pair(s).

Parameters
• symbols – A list of forex tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from/to. For example: USD/CNH.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

13.7. Callback Streamer Client (Sync) 187

polygon, Release 1.0.8

unsubscribe_forex_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream service for the symbols specified. Defaults to all symbols.

Parameters
symbols – A list of forex tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from/to. For example: USD/CNH.

subscribe_crypto_trades(symbols: Optional[list] = None, force_uppercase_symbols: bool = True)
Stream real-time Trades for given cryptocurrency pair(s).

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_crypto_trades(symbols: Optional[list] = None)
Unsubscribe real-time trades for given cryptocurrency pair(s).

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with
or without the prefix X:

Returns
None

subscribe_crypto_quotes(symbols: Optional[list] = None, force_uppercase_symbols: bool = True)
Stream real-time Quotes for given cryptocurrency pair(s).

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_crypto_quotes(symbols: Optional[list] = None)
Unsubscribe real-time quotes for given cryptocurrency pair(s).

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with
or without the prefix X:

Returns
None

subscribe_crypto_minute_aggregates(symbols: Optional[list] = None, force_uppercase_symbols: bool
= True)

Stream real-time Minute Aggregates for given cryptocurrency pair(s).

188 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_crypto_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe real-time minute aggregates for given cryptocurrency pair(s).

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with
or without the prefix X:

Returns
None

subscribe_crypto_level2_book(symbols: Optional[list] = None, force_uppercase_symbols: bool =
True)

Stream real-time level 2 book data for given cryptocurrency pair(s).

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

unsubscribe_crypto_level2_book(symbols: Optional[list] = None)
Unsubscribe real-time level 2 book data for given cryptocurrency pair(s).

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with
or without the prefix X:

Returns
None

static _default_on_msg(_ws: WebSocketApp, msg)
Default handler for message processing

Parameters
msg – The message as received from the server

Returns
None

static _default_on_close(_ws: WebSocketApp, close_code, msg)
THe default function to be called when stream is closed.

13.7. Callback Streamer Client (Sync) 189

polygon, Release 1.0.8

Parameters
• close_code – The close code as received from server

• msg – The close message as received from server

Returns
static _default_on_error(_ws: WebSocketApp, error, *args)

Default function to be called when an error is encountered.

Parameters
error – The exception object as supplied by the handler

Returns
None

_default_on_open(_ws: WebSocketApp, *args)
Default function to be called when stream client is initialized. Takes care of the authentication.

Parameters
args – Any args supplied by the handler

Returns
None

static _change_enum(val: ~typing.Union[str, ~enum.Enum, float, int], allowed_type=<class 'str'>)

13.8 Async Streamer Client

class polygon.streaming.async_streaming.AsyncStreamClient(api_key: str, cluster,
host='socket.polygon.io', ping_interval:
Optional[int] = 20, ping_timeout:
Optional[int] = 19, max_message_size:
int = 1048576, max_memory_queue:
Optional[int] = 32, read_limit: int =
65536, write_limit: int = 65536)

These docs are not meant for general users. These are library API references. The actual docs will be available
on the index page when they are prepared.

Note that this is asyncio based stream client which is suitable for async applications. If you need to stream using
an callback based stream client, see Callback Streamer Client (Sync).

This class implements all the websocket endpoints. Note that you should always import names from top level.
eg: from polygon import AsyncStreamClient or import polygon (which allows you to access all names
easily)

Creating the client is as simple as: client = AsyncStreamClient('MY_API_KEY', 'other_options')

Once you have the client, you can call its methods to subscribe/unsubscribe to streams, change handlers and
process messages. All methods have sane default values and almost everything can be customized.

Type Hinting tells you what data type a parameter is supposed to be. You should always use enums for most
parameters to avoid supplying error prone values.

Take a look at the Official documentation to get an idea of the stream, data formatting for messages and related
useful stuff.

190 Chapter 13. Library Interface Documentation

https://polygon.io/docs/websockets/getting-started

polygon, Release 1.0.8

__init__(api_key: str, cluster, host='socket.polygon.io', ping_interval: Optional[int] = 20, ping_timeout:
Optional[int] = 19, max_message_size: int = 1048576, max_memory_queue: Optional[int] = 32,
read_limit: int = 65536, write_limit: int = 65536)

Initializes the stream client for async streaming Official Docs

Parameters
• api_key – Your API Key. Visit your dashboard to get yours.

• cluster – Which market/cluster to connect to. See polygon.enums.StreamCluster
for choices. NEVER connect to the same cluster again if there is an existing stream con-
nected to it. The existing connection would be dropped and new one will be established.
You can have up to 4 concurrent streams connected to 4 different clusters.

• host – Host url to connect to. Default is real time. See polygon.enums.StreamHost for
choices

• ping_interval – Send a ping to server every specified number of seconds to keep the
connection alive. Defaults to 20 seconds. Setting to 0 disables pinging.

• ping_timeout – The number of seconds to wait after sending a ping for the response
(pong). If no response is received from the server in those many seconds, stream is con-
sidered dead and exits with code 1011. Defaults to 19 seconds.

• max_message_size – The max_size parameter enforces the maximum size for in-
coming messages in bytes. The default value is 1 MiB (not MB). None disables the
limit. If a message larger than the maximum size is received, recv() will raise
ConnectionClosedError and the connection will be closed with code 1009

• max_memory_queue – sets the maximum length of the queue that holds incoming mes-
sages. The default value is 32. None disables the limit. Messages are added to an in-
memory queue when they’re received; then recv() pops from that queue

• read_limit – sets the high-water limit of the buffer for incoming bytes. The low-water
limit is half the high-water limit. The default value is 64 KiB, half of asyncio’s default.
Don’t change if you are unsure of what it implies.

• write_limit – The write_limit argument sets the high-water limit of the buffer for out-
going bytes. The low-water limit is a quarter of the high-water limit. The default value is
64 KiB, equal to asyncio’s default. Don’t change if you’re unsure what it implies.

async login(key: Optional[str] = None)
Creates Websocket Socket client using the configuration and Logs to the stream with credentials. Primarily
meant for internal uses. You shouldn’t need to call this method manually as the streamer does it automati-
cally behind the scenes

Returns
None

async _send(data: str)
Internal function to send data to websocket server endpoint

Parameters
data – The formatted data string to be sent.

Returns
None

async _recv()

Internal function to receive messages from websocket server endpoint.

13.8. Async Streamer Client 191

https://polygon.io/docs/websockets/getting-started

polygon, Release 1.0.8

Returns
The JSON decoded message data dictionary.

async handle_messages(reconnect: bool = False, max_reconnection_attempts=5, reconnection_delay=5)
The primary method to start the stream. Connects & Logs in by itself. Allows Reconnecting by simply
altering a parameter (subscriptions are persisted across reconnected streams)

Parameters
• reconnect – If this is False (default), it simply awaits the next message and calls the

appropriate handler. Uses the _default_process_message() if no handler was spec-
ified. You should use the statement inside a while loop in that case. Setting it to True
creates an inner loop which traps disconnection errors except login failed due to invalid
Key, and reconnects to the stream with the same subscriptions it had earlier before getting
disconnected.

• max_reconnection_attempts – Determines how many times should the program at-
tempt to reconnect in case of failed attempts. The Counter is reset as soon as a successful
connection is re-established. Setting it to False disables the limit which is NOT recom-
mended unless you know you got a situation. This value is ignored if reconnect is False
(The default). Defaults to 5.

• reconnection_delay – Number of seconds to wait before attempting to reconnect after
a failed reconnection attempt or a disconnection. This value is ignored if reconnect is
False (the default). Defaults to 5.

Returns
None

async reconnect()→ tuple
Reconnects the stream. Existing subscriptions (ones before disconnections) are persisted and automatically
re-subscribed when reconnection succeeds. All the handlers are also automatically restored. Returns a tuple
based on success status. While this instance method is supposed to be used internally, it is possible to utilize
this in your your custom attempts of reconnection implementation. Feel free to share your implementations
with the community if you find success :)

Returns
(True, message) if reconnection succeeds else (False, message)

async _default_process_message(update)
The default Handler for Message Streams which were NOT initialized with a handler function

Parameters
update – The update message as received after decoding the message.

Returns
None

_default_handlers_and_apis()

Assign default handler value to all stream setups. ONLY meant for internal use

async _modify_sub(symbols: Optional[Union[str, list]], action: str = 'subscribe', _prefix: str = 'T.',
force_uppercase_symbols: bool = True)

Internal Function to send subscribe or unsubscribe requests to websocket. You should prefer using the
corresponding methods to subscribe or unsubscribe to stream.

Parameters
• symbols – The list of symbols to apply the actions to.

192 Chapter 13. Library Interface Documentation

https://github.com/pssolanki111/polygon/wiki
https://github.com/pssolanki111/polygon/wiki

polygon, Release 1.0.8

• action – Defaults to subscribe which subscribes to requested stream. Change to unsub-
scribe to remove an existing subscription.

• _prefix – prefix of the stream service. See polygon.enums.StreamServicePrefix
for choices.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async subscribe_stock_trades(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time trades for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL tickers.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_stock_trades(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

async subscribe_stock_quotes(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time quotes for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL tickers.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_stock_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

13.8. Async Streamer Client 193

polygon, Release 1.0.8

async subscribe_stock_minute_aggregates(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Minute Aggregates for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_stock_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

async subscribe_stock_second_aggregates(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Seconds Aggregates for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_stock_second_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

async subscribe_stock_limit_up_limit_down(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols:
bool = True)

Get Real time LULD Events for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

194 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_stock_limit_up_limit_down(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

async subscribe_stock_imbalances(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Imbalance Events for provided symbol(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_stock_imbalances(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied ticker symbols.

Parameters
symbols – A list of tickers to unsubscribe from. Defaults to ALL tickers.

Returns
None

async subscribe_option_trades(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time options trades for provided ticker(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker. You can specify with

or without the prefix O:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_option_trades(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied option symbols.

13.8. Async Streamer Client 195

polygon, Release 1.0.8

Parameters
symbols – A list of symbols to unsubscribe from. Defaults to ALL tickers. You can specify
with or without the prefix O:

Returns
None

async subscribe_option_quotes(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time options quotes for provided ticker(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker. You can specify with

or without the prefix O:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_option_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied option symbols.

Parameters
symbols – A list of symbols to unsubscribe from. Defaults to ALL tickers. You can specify
with or without the prefix O:

Returns
None

async subscribe_option_minute_aggregates(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols: bool
= True)

Get Real time options minute aggregates for given ticker(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker. You can specify with

or without the prefix O:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_option_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied option symbols.

Parameters
symbols – A list of symbols to unsubscribe from. Defaults to ALL tickers. You can specify
with or without the prefix O:

196 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

Returns
None

async subscribe_option_second_aggregates(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols: bool
= True)

Get Real time options second aggregates for given ticker(s)

Parameters
• symbols – A list of tickers to subscribe to. Defaults to ALL ticker. You can specify with

or without the prefix O:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_option_second_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied option symbols.

Parameters
symbols – A list of symbols to unsubscribe from. Defaults to ALL tickers. You can specify
with or without the prefix O:

Returns
None

async subscribe_forex_quotes(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Forex Quotes for provided symbol(s)

Parameters
• symbols – A list of forex tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from/to. For example: USD/CNH.

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_forex_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied forex symbols.

Parameters
symbols – A list of forex tickers. Default is * which unsubscribes to ALL tickers in the
market. each Ticker must be in format: from/to. For example: USD/CNH.

Returns
None

13.8. Async Streamer Client 197

polygon, Release 1.0.8

async subscribe_forex_minute_aggregates(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Forex Minute Aggregates for provided symbol(s)

Parameters
• symbols – A list of forex tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from/to. For example: USD/CNH

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_forex_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied forex symbols.

Parameters
symbols – A list of forex tickers. Default is * which unsubscribes to ALL tickers in the
market. each Ticker must be in format: from/to. For example: USD/CNH.

Returns
None

async subscribe_crypto_trades(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Crypto Trades for provided symbol(s)

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_crypto_trades(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied crypto symbols.

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with
or without the prefix X:

Returns
None

async subscribe_crypto_quotes(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Crypto Quotes for provided symbol(s)

198 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_crypto_quotes(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied crypto symbols.

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with
or without the prefix X:

Returns
None

async subscribe_crypto_minute_aggregates(symbols: Optional[list] = None,
handler_function=None, force_uppercase_symbols: bool
= True)

Get Real time Crypto Minute Aggregates for provided symbol(s)

Parameters
• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the

market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_crypto_minute_aggregates(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied crypto symbols.

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with
or without the prefix X:

Returns
None

async subscribe_crypto_level2_book(symbols: Optional[list] = None, handler_function=None,
force_uppercase_symbols: bool = True)

Get Real time Crypto Level 2 Book Data for provided symbol(s)

Parameters

13.8. Async Streamer Client 199

polygon, Release 1.0.8

• symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the
market. each Ticker must be in format: from-to. For example: BTC-USD. you can pass
symbols with or without the prefix X:

• handler_function – The function which you’d want to call to process messages received
from this subscription. Defaults to None which uses the default process message function.

• force_uppercase_symbols – Set to False if you don’t want the library to make all
symbols upper case

Returns
None

async unsubscribe_crypto_level2_book(symbols: Optional[list] = None)
Unsubscribe from the stream for the supplied crypto symbols.

Parameters
symbols – A list of Crypto tickers. Default is * which subscribes to ALL tickers in the market.
each Ticker must be in format: from-to. For example: BTC-USD. you can pass symbols with
or without the prefix X:

Returns
None

async change_handler(service_prefix, handler_function)
Change your handler function for a service. Can be used to update handlers dynamically while stream is
running.

Parameters
• service_prefix – The Prefix of the service you want to change handler for. see
polygon.enums.StreamServicePrefix for choices.

• handler_function – The new handler function to assign for this service

Returns
None

13.9 Enums Interface

class polygon.enums.TickerMarketType(value)
Market Types for method: ReferenceClient.get_tickers()

STOCKS = 'stocks'

OPTIONS = 'options'

FOREX = 'fx'

CRYPTO = 'crypto'

class polygon.enums.TickerType(value)
Ticker types for method: ReferenceClient.get_tickers()

CS = 'CS'

COMMON_STOCKS = 'CS'

200 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

ADRC = 'ADRC'

ADRP = 'ADRP'

ADRR = 'ADRR'

UNIT = 'UNIT'

RIGHT = 'RIGHT'

PFD = 'PFD'

FUND = 'FUND'

SP = 'SP'

WARRANT = 'WARRANT'

INDEX = 'INDEX'

ETF = 'ETF'

ETN = 'ETN'

class polygon.enums.TickerSortType(value)
Sort key for method: ReferenceClient.get_tickers()

TICKER = 'ticker'

NAME = 'name'

MARKET = 'market'

LOCALE = 'locale'

PRIMARY_EXCHANGE = 'primary_exchange'

TYPE = 'type'

ACTIVE = 'active'

CURRENCY_SYMBOL = 'currency_symbol'

CURRENCY_NAME = 'currency_name'

BASE_CURRENCY_SYMBOL = 'base_currency_symbol'

BASE_CURRENCY_NAME = 'base_currency_name'

CIK = 'cik'

COMPOSITE_FIGI = 'composite_figi'

SHARE_CLASS_FIGI = 'share_class_figi'

LAST_UPDATED_UTC = 'last_updated_utc'

DELISTED_UTC = 'delisted_utc'

13.9. Enums Interface 201

polygon, Release 1.0.8

class polygon.enums.SortOrder(value)
Order of sort. Ascending usually means oldest at the top. Descending usually means newest at the top. It
is recommended to ensure the behavior in the corresponding function’s docs. This enum can be used by any
method accepting Sort order values.

ASCENDING = 'asc'

ASC = 'asc'

DESCENDING = 'desc'

DESC = 'desc'

class polygon.enums.TickerTypeAssetClass(value)
Asset Class for method: ReferenceClient.get_ticker_types_v3()

STOCKS = 'stocks'

OPTIONS = 'options'

FOREX = 'fx'

CRYPTO = 'crypto'

class polygon.enums.TickerNewsSort(value)
Sort key for method: ReferenceClient.get_ticker_news()

PUBLISHED_UTC = 'published_utc'

ALL = None

class polygon.enums.StockReportType(value)
Type of report for method: ReferenceClient.get_stock_financials()

YEAR = 'Y'

Y = 'Y'

YA = 'YA'

YEAR_ANNUALIZED = 'YA'

Q = 'Q'

QUARTER = 'Q'

QA = 'QA'

QUARTER_ANNUALIZED = 'QA'

T = 'T'

TRAILING_TWELVE_MONTHS = 'T'

TA = 'TA'

TRAILING_TWELVE_MONTHS_ANNUALIZED = 'TA'

class polygon.enums.StockFinancialsSortType(value)
Direction to use for sorting report for method: ReferenceClient.get_stock_financials()

202 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

REPORT_PERIOD = 'reportPeriod'

REVERSE_REPORT_PERIOD = '-reportPeriod'

CALENDAR_DATE = 'calendarDate'

REVERSE_CALENDAR_DATE = '-calendarDate'

class polygon.enums.StockFinancialsTimeframe(value)
Query by timeframe. Annual financials originate from 10-K filings, and quarterly financials originate from 10-Q
filings. Note: Most companies do not file quarterly reports for Q4 and instead include those financials in their
annual report, so some companies my not return quarterly financials for Q4 for method: ReferenceClient.
get_stock_financials_vx()

ANNUAL = 'annual'

QUARTERLY = 'quarterly'

class polygon.enums.StockFinancialsSortKey(value)
Sort field for method: ReferenceClient.get_stock_financials_vx()

FILLING_DATE = 'filling_date'

PERIOD_OF_REPORT_DATE = 'period_of_report_date'

class polygon.enums.ConditionMappingTickType(value)
Tick Type for method: ReferenceClient.get_condition_mappings()

TRADES = 'trades'

QUOTES = 'quotes'

class polygon.enums.ConditionsDataType(value)
Type of data for method: ReferenceClient.get_conditions()

TRADE = 'trade'

BBO = 'bbo'

NBBO = 'nbbo'

class polygon.enums.ConditionsSIP(value)
SIP for method: ReferenceClient.get_conditions()

CTA = 'CTA'

UTP = 'UTP'

OPRA = 'OPRA'

class polygon.enums.ConditionsSortKey(value)
Sort key for method: ReferenceClient.get_conditions()

ASSET_CLASS = 'asset_class'

ID = 'id'

TYPE = 'type'

NAME = 'name'

13.9. Enums Interface 203

polygon, Release 1.0.8

DATA_TYPES = 'data_types'

LEGACY = 'legacy'

class polygon.enums.AssetClass(value)
Asset Class for methods: ReferenceClient.get_exchanges_v3() and ReferenceClient.
get_conditions() and wherever needed.

STOCKS = 'stocks'

OPTIONS = 'options'

FOREX = 'fx'

CRYPTO = 'crypto'

class polygon.enums.Locale(value)
Locale name``

US = 'us'

GLOBAL = 'global'

class polygon.enums.SnapshotDirection

Direction to be supplied to the SnapShot - Gainers and Losers APIs on Stocks, Forex and Crypto endpoints

GAINERS = 'gainers'

GAIN = 'gainers'

LOSERS = 'losers'

LOSE = 'losers'

class polygon.enums.PaginationDirection(value)
The direction to paginate in.

NEXT = 'next'

FORWARD = 'next'

PREV = 'previous'

PREVIOUS = 'previous'

BACKWARD = 'previous'

class polygon.enums.StreamCluster(value)
The cluster to connect to. To be used for both callback and async stream client. NEVER connect to the same
cluster again if there is an existing stream connected to it. The existing connection would be dropped and new
one will be established. You can have up to 4 concurrent streams connected to 4 different clusters.

STOCKS = 'stocks'

OPTIONS = 'options'

FOREX = 'forex'

CRYPTO = 'crypto'

204 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

class polygon.enums.OptionsContractType(value)
Contract Type for method: ReferenceClient.get_options_contracts()

CALL = 'call'

PUT = 'put'

OTHER = 'other'

class polygon.enums.OptionsContractsSortType(value)
Sort field used for ordering for method: ReferenceClient.get_options_contracts()

TICKER = 'ticker'

UNDERLYING_TICKER = 'underlying_ticker'

EXPIRATION_DATE = 'expiration_date'

STRIKE_PRICE = 'strike_price'

class polygon.enums.OptionTradesSort(value)
Sort field used for ordering option trades. Used for method: OptionsClient.get_trades

TIMESTAMP = 'timestamp'

class polygon.enums.OptionQuotesSort(value)
Sort field used for ordering option quotes. Used for method: OptionsClient.get_quotes

TIMESTAMP = 'timestamp'

class polygon.enums.StocksTradesSort(value)
Sort field used for ordering Stocks trades. Used for method: StocksClient.get_trades

TIMESTAMP = 'timestamp'

class polygon.enums.StocksQuotesSort(value)
Sort field used for ordering Stocks quotes. Used for method: StocksClient.get_quotes

TIMESTAMP = 'timestamp'

class polygon.enums.SplitsSortKey(value)
Sort field used for ordering stock splits. Used for method ReferenceClient.get_stock_splits

EXECUTION_DATE = 'execution_date'

TICKER = 'ticker'

class polygon.enums.PayoutFrequency(value)
the number of times per year the dividend is paid out. Possible values are 0 (one-time), 1 (annually), 2 (bi-
annually), 4 (quarterly), and 12 (monthly). used by method ReferenceClient.get_stock_dividends

ONE_TIME = 0

ANNUALLY = 1

BI_ANNUALLY = 2

QUARTERLY = 4

MONTHLY = 12

13.9. Enums Interface 205

polygon, Release 1.0.8

class polygon.enums.DividendType(value)
the type of dividend. Dividends that have been paid and/or are expected to be paid on consistent schedules
are denoted as CD. Special Cash dividends that have been paid that are infrequent or unusual, and/or can not be
expected to occur in the future are denoted as SC. Used for method ReferenceClient.get_stock_dividends

CD = 'CD'

SC = 'SC'

LT = 'LT'

ST = 'ST'

class polygon.enums.DividendSort(value)
sort field used for ordering dividend results. used for method ReferenceClient.get_stock_dividends

EX_DIVIDEND_DATE = 'ex_dividend_date'

PAY_DATE = 'pay_date'

DECLARATION_DATE = 'declaration_date'

RECORD_DATE = 'record_date'

CASH_AMOUNT = 'cash_amount'

TICKER = 'ticker'

class polygon.enums.ForexQuotesSort(value)
Sort field used for ordering Forex quotes. Used for method: ForexClient.get_quotes

TIMESTAMP = 'timestamp'

class polygon.enums.CryptoTradesSort(value)
Sort field used for ordering crypto trades. Used for method: CryptoClient.get_trades

TIMESTAMP = 'timestamp'

class polygon.enums.StreamHost(value)
Host to be used for stream connections. WHY on earth would you use delayed if you’re paying for polygon??

REAL_TIME = 'socket.polygon.io'

DELAYED = 'delayed.polygon.io'

class polygon.enums.StreamServicePrefix(value)
Service Prefix for Stream endpoints. To be used for method: AsyncStreamClient.async
change_handler()

STOCK_TRADES = 'T'

STOCK_QUOTES = 'Q'

STOCK_MINUTE_AGGREGATES = 'AM'

STOCK_SECOND_AGGREGATES = 'A'

STOCK_LULD = 'LULD'

206 Chapter 13. Library Interface Documentation

polygon, Release 1.0.8

STOCK_IMBALANCES = 'NOI'

FOREX_QUOTES = 'C'

FOREX_MINUTE_AGGREGATES = 'CA'

CRYPTO_TRADES = 'XT'

CRYPTO_QUOTES = 'XQ'

CRYPTO_LEVEL2 = 'XL2'

CRYPTO_MINUTE_AGGREGATES = 'XA'

STATUS = 'status'

OPTION_TRADES = 'T'

OPTION_QUOTES = 'Q'

OPTION_MINUTE_AGGREGATES = 'AM'

OPTION_SECOND_AGGREGATES = 'A'

class polygon.enums.Timespan(value)
The timespan values. Usually meant for aggregates endpoints. It is best to consult the relevant docs before using
any value on an endpoint.

MINUTE = 'minute'

MIN = 'minute'

HOUR = 'hour'

DAY = 'day'

WEEK = 'week'

MONTH = 'month'

QUARTER = 'quarter'

YEAR = 'year'

class polygon.enums.OptionSymbolFormat(value)
Option symbol formats supported by the library. To be used with functions to build or parse option symbols

POLYGON = 'polygon'

TDA = 'tda'

TD_AMERITRADE = 'tda'

TOS = 'tos'

THINK_OR_SWIM = 'tos'

TRADIER = 'tradier'

TRADE_STATION = 'trade_station'

13.9. Enums Interface 207

polygon, Release 1.0.8

IB = 'ibkr'

IBKR = 'ibkr'

INTERACTIVE_BROKERAGE = 'ibkr'

208 Chapter 13. Library Interface Documentation

CHAPTER

FOURTEEN

INDICES AND TABLES

• genindex

• modindex

• search

209

polygon, Release 1.0.8

210 Chapter 14. Indices and tables

PYTHON MODULE INDEX

p
polygon.enums, 200

211

polygon, Release 1.0.8

212 Python Module Index

INDEX

Symbols
__init__() (polygon.base_client.BaseAsyncClient

method), 109
__init__() (polygon.base_client.BaseClient method),

106
__init__() (polygon.crypto.crypto_api.AsyncCryptoClient

method), 176
__init__() (polygon.crypto.crypto_api.SyncCryptoClient

method), 171
__init__() (polygon.forex.forex_api.AsyncForexClient

method), 166
__init__() (polygon.forex.forex_api.SyncForexClient

method), 161
__init__() (polygon.options.options.AsyncOptionsClient

method), 134
__init__() (polygon.options.options.OptionSymbol

method), 128
__init__() (polygon.options.options.SyncOptionsClient

method), 129
__init__() (polygon.reference_apis.reference_api.AsyncReferenceClient

method), 150
__init__() (polygon.reference_apis.reference_api.SyncReferenceClient

method), 139
__init__() (polygon.stocks.stocks.AsyncStocksClient

method), 119
__init__() (polygon.stocks.stocks.SyncStocksClient

method), 113
__init__() (polygon.streaming.async_streaming.AsyncStreamClient

method), 190
__init__() (polygon.streaming.streaming.StreamClient

method), 182
__repr__() (polygon.options.options.OptionSymbol

method), 129
_authenticate() (poly-

gon.streaming.streaming.StreamClient
method), 183

_change_enum() (polygon.base_client.Base static
method), 106

_change_enum() (poly-
gon.streaming.streaming.StreamClient static
method), 190

_default_handlers_and_apis() (poly-

gon.streaming.async_streaming.AsyncStreamClient
method), 192

_default_on_close() (poly-
gon.streaming.streaming.StreamClient static
method), 189

_default_on_error() (poly-
gon.streaming.streaming.StreamClient static
method), 190

_default_on_msg() (poly-
gon.streaming.streaming.StreamClient static
method), 189

_default_on_open() (poly-
gon.streaming.streaming.StreamClient
method), 190

_default_process_message() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 192

_get_response() (poly-
gon.base_client.BaseAsyncClient method),
110

_get_response() (polygon.base_client.BaseClient
method), 106

_modify_sub() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 192

_modify_sub() (poly-
gon.streaming.streaming.StreamClient
method), 183

_paginate() (polygon.base_client.BaseAsyncClient
method), 111

_paginate() (polygon.base_client.BaseClient method),
108

_recv() (polygon.streaming.async_streaming.AsyncStreamClient
method), 191

_send() (polygon.streaming.async_streaming.AsyncStreamClient
method), 191

_start_stream() (poly-
gon.streaming.streaming.StreamClient
method), 183

A
ACTIVE (polygon.enums.TickerSortType attribute), 201

213

polygon, Release 1.0.8

ADRC (polygon.enums.TickerType attribute), 200
ADRP (polygon.enums.TickerType attribute), 201
ADRR (polygon.enums.TickerType attribute), 201
ALL (polygon.enums.TickerNewsSort attribute), 202
ANNUAL (polygon.enums.StockFinancialsTimeframe at-

tribute), 203
ANNUALLY (polygon.enums.PayoutFrequency attribute),

205
ASC (polygon.enums.SortOrder attribute), 202
ASCENDING (polygon.enums.SortOrder attribute), 202
ASSET_CLASS (polygon.enums.ConditionsSortKey

attribute), 203
AssetClass (class in polygon.enums), 204
AsyncCryptoClient (class in poly-

gon.crypto.crypto_api), 176
AsyncForexClient (class in polygon.forex.forex_api),

166
AsyncOptionsClient (class in poly-

gon.options.options), 134
AsyncReferenceClient (class in poly-

gon.reference_apis.reference_api), 150
AsyncStocksClient (class in polygon.stocks.stocks),

119
AsyncStreamClient (class in poly-

gon.streaming.async_streaming), 190
aw_task() (polygon.base_client.BaseAsyncClient static

method), 109

B
BACKWARD (polygon.enums.PaginationDirection at-

tribute), 204
Base (class in polygon.base_client), 105
BASE_CURRENCY_NAME (polygon.enums.TickerSortType

attribute), 201
BASE_CURRENCY_SYMBOL (poly-

gon.enums.TickerSortType attribute), 201
BaseAsyncClient (class in polygon.base_client), 109
BaseClient (class in polygon.base_client), 106
BBO (polygon.enums.ConditionsDataType attribute), 203
BI_ANNUALLY (polygon.enums.PayoutFrequency at-

tribute), 205
build_option_symbol() (in module poly-

gon.options.options), 126
build_polygon_option_symbol() (in module poly-

gon.options.options), 127

C
CALENDAR_DATE (poly-

gon.enums.StockFinancialsSortType attribute),
203

CALL (polygon.enums.OptionsContractType attribute),
205

CASH_AMOUNT (polygon.enums.DividendSort attribute),
206

CD (polygon.enums.DividendType attribute), 206
change_handler() (poly-

gon.streaming.async_streaming.AsyncStreamClient
method), 200

CIK (polygon.enums.TickerSortType attribute), 201
close() (polygon.base_client.BaseAsyncClient method),

109
close() (polygon.base_client.BaseClient method), 106
close_stream() (poly-

gon.streaming.streaming.StreamClient
method), 183

COMMON_STOCKS (polygon.enums.TickerType attribute),
200

COMPOSITE_FIGI (polygon.enums.TickerSortType
attribute), 201

ConditionMappingTickType (class in polygon.enums),
203

ConditionsDataType (class in polygon.enums), 203
ConditionsSIP (class in polygon.enums), 203
ConditionsSortKey (class in polygon.enums), 203
convert_option_symbol_formats() (in module poly-

gon.options.options), 128
CRYPTO (polygon.enums.AssetClass attribute), 204
CRYPTO (polygon.enums.StreamCluster attribute), 204
CRYPTO (polygon.enums.TickerMarketType attribute),

200
CRYPTO (polygon.enums.TickerTypeAssetClass attribute),

202
CRYPTO_LEVEL2 (polygon.enums.StreamServicePrefix at-

tribute), 207
CRYPTO_MINUTE_AGGREGATES (poly-

gon.enums.StreamServicePrefix attribute),
207

CRYPTO_QUOTES (polygon.enums.StreamServicePrefix at-
tribute), 207

CRYPTO_TRADES (polygon.enums.StreamServicePrefix at-
tribute), 207

CryptoClient() (in module poly-
gon.crypto.crypto_api), 61

CryptoTradesSort (class in polygon.enums), 206
CS (polygon.enums.TickerType attribute), 200
CTA (polygon.enums.ConditionsSIP attribute), 203
CURRENCY_NAME (polygon.enums.TickerSortType at-

tribute), 201
CURRENCY_SYMBOL (polygon.enums.TickerSortType at-

tribute), 201

D
DATA_TYPES (polygon.enums.ConditionsSortKey at-

tribute), 203
DAY (polygon.enums.Timespan attribute), 207
DECLARATION_DATE (polygon.enums.DividendSort at-

tribute), 206
DELAYED (polygon.enums.StreamHost attribute), 206

214 Index

polygon, Release 1.0.8

DELISTED_UTC (polygon.enums.TickerSortType at-
tribute), 201

DESC (polygon.enums.SortOrder attribute), 202
DESCENDING (polygon.enums.SortOrder attribute), 202
detect_option_symbol_format() (in module poly-

gon.options.options), 128
DividendSort (class in polygon.enums), 206
DividendType (class in polygon.enums), 205

E
ensure_prefix() (in module polygon.options.options),

128
ETF (polygon.enums.TickerType attribute), 201
ETN (polygon.enums.TickerType attribute), 201
EX_DIVIDEND_DATE (polygon.enums.DividendSort at-

tribute), 206
EXECUTION_DATE (polygon.enums.SplitsSortKey at-

tribute), 205
EXPIRATION_DATE (poly-

gon.enums.OptionsContractsSortType at-
tribute), 205

F
FILLING_DATE (polygon.enums.StockFinancialsSortKey

attribute), 203
FOREX (polygon.enums.AssetClass attribute), 204
FOREX (polygon.enums.StreamCluster attribute), 204
FOREX (polygon.enums.TickerMarketType attribute), 200
FOREX (polygon.enums.TickerTypeAssetClass attribute),

202
FOREX_MINUTE_AGGREGATES (poly-

gon.enums.StreamServicePrefix attribute),
207

FOREX_QUOTES (polygon.enums.StreamServicePrefix at-
tribute), 207

ForexClient() (in module polygon.forex.forex_api), 53
ForexQuotesSort (class in polygon.enums), 206
FORWARD (polygon.enums.PaginationDirection attribute),

204
FUND (polygon.enums.TickerType attribute), 201

G
GAIN (polygon.enums.SnapshotDirection attribute), 204
GAINERS (polygon.enums.SnapshotDirection attribute),

204
get_aggregate_bars() (poly-

gon.crypto.crypto_api.AsyncCryptoClient
method), 179

get_aggregate_bars() (poly-
gon.crypto.crypto_api.SyncCryptoClient
method), 173

get_aggregate_bars() (poly-
gon.forex.forex_api.AsyncForexClient method),
168

get_aggregate_bars() (poly-
gon.forex.forex_api.SyncForexClient method),
163

get_aggregate_bars() (poly-
gon.options.options.AsyncOptionsClient
method), 137

get_aggregate_bars() (poly-
gon.options.options.SyncOptionsClient
method), 132

get_aggregate_bars() (poly-
gon.stocks.stocks.AsyncStocksClient method),
124

get_aggregate_bars() (poly-
gon.stocks.stocks.SyncStocksClient method),
117

get_all_pages() (poly-
gon.base_client.BaseAsyncClient method),
111

get_all_pages() (polygon.base_client.BaseClient
method), 107

get_conditions() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 160

get_conditions() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 149

get_current_price() (poly-
gon.stocks.stocks.AsyncStocksClient method),
125

get_current_price() (poly-
gon.stocks.stocks.SyncStocksClient method),
118

get_daily_open_close() (poly-
gon.crypto.crypto_api.AsyncCryptoClient
method), 179

get_daily_open_close() (poly-
gon.crypto.crypto_api.SyncCryptoClient
method), 173

get_daily_open_close() (poly-
gon.options.options.AsyncOptionsClient
method), 137

get_daily_open_close() (poly-
gon.options.options.SyncOptionsClient
method), 131

get_daily_open_close() (poly-
gon.stocks.stocks.AsyncStocksClient method),
123

get_daily_open_close() (poly-
gon.stocks.stocks.SyncStocksClient method),
116

get_exchanges() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 160

get_exchanges() (poly-

Index 215

polygon, Release 1.0.8

gon.reference_apis.reference_api.SyncReferenceClient
method), 149

get_full_range_aggregates() (poly-
gon.base_client.BaseAsyncClient method),
112

get_full_range_aggregates() (poly-
gon.base_client.BaseClient method), 108

get_gainers_and_losers() (poly-
gon.crypto.crypto_api.AsyncCryptoClient
method), 181

get_gainers_and_losers() (poly-
gon.crypto.crypto_api.SyncCryptoClient
method), 175

get_gainers_and_losers() (poly-
gon.forex.forex_api.AsyncForexClient method),
170

get_gainers_and_losers() (poly-
gon.forex.forex_api.SyncForexClient method),
165

get_gainers_and_losers() (poly-
gon.stocks.stocks.AsyncStocksClient method),
126

get_gainers_and_losers() (poly-
gon.stocks.stocks.SyncStocksClient method),
119

get_grouped_daily_bars() (poly-
gon.crypto.crypto_api.AsyncCryptoClient
method), 180

get_grouped_daily_bars() (poly-
gon.crypto.crypto_api.SyncCryptoClient
method), 174

get_grouped_daily_bars() (poly-
gon.forex.forex_api.AsyncForexClient method),
169

get_grouped_daily_bars() (poly-
gon.forex.forex_api.SyncForexClient method),
164

get_grouped_daily_bars() (poly-
gon.stocks.stocks.AsyncStocksClient method),
125

get_grouped_daily_bars() (poly-
gon.stocks.stocks.SyncStocksClient method),
117

get_historic_forex_ticks() (poly-
gon.forex.forex_api.AsyncForexClient method),
166

get_historic_forex_ticks() (poly-
gon.forex.forex_api.SyncForexClient method),
161

get_historic_trades() (poly-
gon.crypto.crypto_api.AsyncCryptoClient
method), 177

get_historic_trades() (poly-
gon.crypto.crypto_api.SyncCryptoClient

method), 171
get_last_quote() (poly-

gon.forex.forex_api.AsyncForexClient method),
168

get_last_quote() (poly-
gon.forex.forex_api.SyncForexClient method),
162

get_last_quote() (poly-
gon.stocks.stocks.AsyncStocksClient method),
123

get_last_quote() (poly-
gon.stocks.stocks.SyncStocksClient method),
116

get_last_trade() (poly-
gon.crypto.crypto_api.AsyncCryptoClient
method), 178

get_last_trade() (poly-
gon.crypto.crypto_api.SyncCryptoClient
method), 173

get_last_trade() (poly-
gon.options.options.AsyncOptionsClient
method), 137

get_last_trade() (poly-
gon.options.options.SyncOptionsClient
method), 131

get_last_trade() (poly-
gon.stocks.stocks.AsyncStocksClient method),
123

get_last_trade() (poly-
gon.stocks.stocks.SyncStocksClient method),
116

get_level2_book() (poly-
gon.crypto.crypto_api.AsyncCryptoClient
method), 181

get_level2_book() (poly-
gon.crypto.crypto_api.SyncCryptoClient
method), 176

get_market_holidays() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 159

get_market_holidays() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 148

get_market_status() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 159

get_market_status() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 149

get_next_page() (poly-
gon.base_client.BaseAsyncClient method),
110

get_next_page() (polygon.base_client.BaseClient
method), 107

216 Index

polygon, Release 1.0.8

get_option_contract() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 152

get_option_contract() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 142

get_option_contracts() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 153

get_option_contracts() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 142

get_page_by_url() (poly-
gon.base_client.BaseAsyncClient method),
110

get_page_by_url() (polygon.base_client.BaseClient
method), 106

get_previous_close() (poly-
gon.crypto.crypto_api.AsyncCryptoClient
method), 180

get_previous_close() (poly-
gon.crypto.crypto_api.SyncCryptoClient
method), 175

get_previous_close() (poly-
gon.forex.forex_api.AsyncForexClient method),
169

get_previous_close() (poly-
gon.forex.forex_api.SyncForexClient method),
164

get_previous_close() (poly-
gon.options.options.AsyncOptionsClient
method), 139

get_previous_close() (poly-
gon.options.options.SyncOptionsClient
method), 133

get_previous_close() (poly-
gon.stocks.stocks.AsyncStocksClient method),
125

get_previous_close() (poly-
gon.stocks.stocks.SyncStocksClient method),
118

get_previous_page() (poly-
gon.base_client.BaseAsyncClient method),
110

get_previous_page() (poly-
gon.base_client.BaseClient method), 107

get_quotes() (polygon.forex.forex_api.AsyncForexClient
method), 167

get_quotes() (polygon.forex.forex_api.SyncForexClient
method), 161

get_quotes() (polygon.options.options.AsyncOptionsClient
method), 136

get_quotes() (polygon.options.options.SyncOptionsClient
method), 130

get_quotes() (polygon.stocks.stocks.AsyncStocksClient
method), 121

get_quotes() (polygon.stocks.stocks.SyncStocksClient
method), 114

get_quotes_v3() (poly-
gon.stocks.stocks.AsyncStocksClient method),
122

get_quotes_v3() (poly-
gon.stocks.stocks.SyncStocksClient method),
115

get_snapshot() (poly-
gon.crypto.crypto_api.AsyncCryptoClient
method), 181

get_snapshot() (poly-
gon.crypto.crypto_api.SyncCryptoClient
method), 175

get_snapshot() (poly-
gon.forex.forex_api.AsyncForexClient method),
170

get_snapshot() (poly-
gon.forex.forex_api.SyncForexClient method),
165

get_snapshot() (poly-
gon.options.options.AsyncOptionsClient
method), 138

get_snapshot() (poly-
gon.options.options.SyncOptionsClient
method), 133

get_snapshot() (poly-
gon.stocks.stocks.AsyncStocksClient method),
125

get_snapshot() (poly-
gon.stocks.stocks.SyncStocksClient method),
118

get_snapshot_all() (poly-
gon.crypto.crypto_api.AsyncCryptoClient
method), 181

get_snapshot_all() (poly-
gon.crypto.crypto_api.SyncCryptoClient
method), 175

get_snapshot_all() (poly-
gon.forex.forex_api.AsyncForexClient method),
170

get_snapshot_all() (poly-
gon.forex.forex_api.SyncForexClient method),
164

get_snapshot_all() (poly-
gon.stocks.stocks.AsyncStocksClient method),
126

get_snapshot_all() (poly-
gon.stocks.stocks.SyncStocksClient method),
118

get_stock_dividends() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient

Index 217

polygon, Release 1.0.8

method), 155
get_stock_dividends() (poly-

gon.reference_apis.reference_api.SyncReferenceClient
method), 144

get_stock_financials_vx() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 157

get_stock_financials_vx() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 146

get_stock_splits() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 158

get_stock_splits() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 147

get_ticker_details() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 152

get_ticker_details() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 141

get_ticker_news() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 154

get_ticker_news() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 143

get_ticker_types() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 152

get_ticker_types() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 141

get_tickers() (poly-
gon.reference_apis.reference_api.AsyncReferenceClient
method), 150

get_tickers() (poly-
gon.reference_apis.reference_api.SyncReferenceClient
method), 140

get_trades() (polygon.crypto.crypto_api.AsyncCryptoClient
method), 177

get_trades() (polygon.crypto.crypto_api.SyncCryptoClient
method), 172

get_trades() (polygon.options.options.AsyncOptionsClient
method), 134

get_trades() (polygon.options.options.SyncOptionsClient
method), 129

get_trades() (polygon.stocks.stocks.AsyncStocksClient
method), 120

get_trades() (polygon.stocks.stocks.SyncStocksClient
method), 113

get_trades_v3() (poly-
gon.stocks.stocks.AsyncStocksClient method),

120
get_trades_v3() (poly-

gon.stocks.stocks.SyncStocksClient method),
113

GLOBAL (polygon.enums.Locale attribute), 204

H
handle_messages() (poly-

gon.streaming.async_streaming.AsyncStreamClient
method), 192

HOUR (polygon.enums.Timespan attribute), 207

I
IB (polygon.enums.OptionSymbolFormat attribute), 207
IBKR (polygon.enums.OptionSymbolFormat attribute),

208
ID (polygon.enums.ConditionsSortKey attribute), 203
INDEX (polygon.enums.TickerType attribute), 201
INTERACTIVE_BROKERAGE (poly-

gon.enums.OptionSymbolFormat attribute),
208

L
LAST_UPDATED_UTC (polygon.enums.TickerSortType at-

tribute), 201
LEGACY (polygon.enums.ConditionsSortKey attribute),

204
Locale (class in polygon.enums), 204
LOCALE (polygon.enums.TickerSortType attribute), 201
login() (polygon.streaming.async_streaming.AsyncStreamClient

method), 191
LOSE (polygon.enums.SnapshotDirection attribute), 204
LOSERS (polygon.enums.SnapshotDirection attribute),

204
LT (polygon.enums.DividendType attribute), 206

M
MARKET (polygon.enums.TickerSortType attribute), 201
MIN (polygon.enums.Timespan attribute), 207
MINUTE (polygon.enums.Timespan attribute), 207
module

polygon.enums, 200
MONTH (polygon.enums.Timespan attribute), 207
MONTHLY (polygon.enums.PayoutFrequency attribute),

205

N
NAME (polygon.enums.ConditionsSortKey attribute), 203
NAME (polygon.enums.TickerSortType attribute), 201
NBBO (polygon.enums.ConditionsDataType attribute), 203
NEXT (polygon.enums.PaginationDirection attribute), 204
normalize_datetime() (polygon.base_client.Base

static method), 105

218 Index

polygon, Release 1.0.8

O
ONE_TIME (polygon.enums.PayoutFrequency attribute),

205
OPRA (polygon.enums.ConditionsSIP attribute), 203
OPTION_MINUTE_AGGREGATES (poly-

gon.enums.StreamServicePrefix attribute),
207

OPTION_QUOTES (polygon.enums.StreamServicePrefix at-
tribute), 207

OPTION_SECOND_AGGREGATES (poly-
gon.enums.StreamServicePrefix attribute),
207

OPTION_TRADES (polygon.enums.StreamServicePrefix at-
tribute), 207

OptionQuotesSort (class in polygon.enums), 205
OPTIONS (polygon.enums.AssetClass attribute), 204
OPTIONS (polygon.enums.StreamCluster attribute), 204
OPTIONS (polygon.enums.TickerMarketType attribute),

200
OPTIONS (polygon.enums.TickerTypeAssetClass at-

tribute), 202
OptionsClient() (in module polygon.options.options),

25
OptionsContractsSortType (class in polygon.enums),

205
OptionsContractType (class in polygon.enums), 204
OptionSymbol (class in polygon.options.options), 128
OptionSymbolFormat (class in polygon.enums), 207
OptionTradesSort (class in polygon.enums), 205
OTHER (polygon.enums.OptionsContractType attribute),

205

P
PaginationDirection (class in polygon.enums), 204
parse_option_symbol() (in module poly-

gon.options.options), 127
parse_polygon_option_symbol() (in module poly-

gon.options.options), 127
PAY_DATE (polygon.enums.DividendSort attribute), 206
PayoutFrequency (class in polygon.enums), 205
PERIOD_OF_REPORT_DATE (poly-

gon.enums.StockFinancialsSortKey attribute),
203

PFD (polygon.enums.TickerType attribute), 201
POLYGON (polygon.enums.OptionSymbolFormat at-

tribute), 207
polygon.enums

module, 200
PREV (polygon.enums.PaginationDirection attribute), 204
PREVIOUS (polygon.enums.PaginationDirection at-

tribute), 204
PRIMARY_EXCHANGE (polygon.enums.TickerSortType at-

tribute), 201

PUBLISHED_UTC (polygon.enums.TickerNewsSort at-
tribute), 202

PUT (polygon.enums.OptionsContractType attribute), 205

Q
Q (polygon.enums.StockReportType attribute), 202
QA (polygon.enums.StockReportType attribute), 202
QUARTER (polygon.enums.StockReportType attribute), 202
QUARTER (polygon.enums.Timespan attribute), 207
QUARTER_ANNUALIZED (polygon.enums.StockReportType

attribute), 202
QUARTERLY (polygon.enums.PayoutFrequency attribute),

205
QUARTERLY (polygon.enums.StockFinancialsTimeframe

attribute), 203
QUOTES (polygon.enums.ConditionMappingTickType at-

tribute), 203

R
REAL_TIME (polygon.enums.StreamHost attribute), 206
real_time_currency_conversion() (poly-

gon.forex.forex_api.AsyncForexClient method),
170

real_time_currency_conversion() (poly-
gon.forex.forex_api.SyncForexClient method),
165

reconnect() (polygon.streaming.async_streaming.AsyncStreamClient
method), 192

RECORD_DATE (polygon.enums.DividendSort attribute),
206

ReferenceClient() (in module poly-
gon.reference_apis.reference_api), 39

REPORT_PERIOD (poly-
gon.enums.StockFinancialsSortType attribute),
202

REVERSE_CALENDAR_DATE (poly-
gon.enums.StockFinancialsSortType attribute),
203

REVERSE_REPORT_PERIOD (poly-
gon.enums.StockFinancialsSortType attribute),
203

RIGHT (polygon.enums.TickerType attribute), 201

S
SC (polygon.enums.DividendType attribute), 206
SHARE_CLASS_FIGI (polygon.enums.TickerSortType at-

tribute), 201
SnapshotDirection (class in polygon.enums), 204
SortOrder (class in polygon.enums), 201
SP (polygon.enums.TickerType attribute), 201
split_date_range() (polygon.base_client.Base

method), 105
SplitsSortKey (class in polygon.enums), 205
ST (polygon.enums.DividendType attribute), 206

Index 219

polygon, Release 1.0.8

start_stream_thread() (poly-
gon.streaming.streaming.StreamClient
method), 183

STATUS (polygon.enums.StreamServicePrefix attribute),
207

STOCK_IMBALANCES (poly-
gon.enums.StreamServicePrefix attribute),
206

STOCK_LULD (polygon.enums.StreamServicePrefix
attribute), 206

STOCK_MINUTE_AGGREGATES (poly-
gon.enums.StreamServicePrefix attribute),
206

STOCK_QUOTES (polygon.enums.StreamServicePrefix at-
tribute), 206

STOCK_SECOND_AGGREGATES (poly-
gon.enums.StreamServicePrefix attribute),
206

STOCK_TRADES (polygon.enums.StreamServicePrefix at-
tribute), 206

StockFinancialsSortKey (class in polygon.enums),
203

StockFinancialsSortType (class in polygon.enums),
202

StockFinancialsTimeframe (class in polygon.enums),
203

StockReportType (class in polygon.enums), 202
STOCKS (polygon.enums.AssetClass attribute), 204
STOCKS (polygon.enums.StreamCluster attribute), 204
STOCKS (polygon.enums.TickerMarketType attribute),

200
STOCKS (polygon.enums.TickerTypeAssetClass attribute),

202
StocksClient() (in module polygon.stocks.stocks), 15
StocksQuotesSort (class in polygon.enums), 205
StocksTradesSort (class in polygon.enums), 205
StreamClient (class in polygon.streaming.streaming),

182
StreamCluster (class in polygon.enums), 204
StreamHost (class in polygon.enums), 206
StreamServicePrefix (class in polygon.enums), 206
STRIKE_PRICE (polygon.enums.OptionsContractsSortType

attribute), 205
subscribe_crypto_level2_book() (poly-

gon.streaming.async_streaming.AsyncStreamClient
method), 199

subscribe_crypto_level2_book() (poly-
gon.streaming.streaming.StreamClient
method), 189

subscribe_crypto_minute_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 199

subscribe_crypto_minute_aggregates() (poly-
gon.streaming.streaming.StreamClient

method), 188
subscribe_crypto_quotes() (poly-

gon.streaming.async_streaming.AsyncStreamClient
method), 198

subscribe_crypto_quotes() (poly-
gon.streaming.streaming.StreamClient
method), 188

subscribe_crypto_trades() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 198

subscribe_crypto_trades() (poly-
gon.streaming.streaming.StreamClient
method), 188

subscribe_forex_minute_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 197

subscribe_forex_minute_aggregates() (poly-
gon.streaming.streaming.StreamClient
method), 187

subscribe_forex_quotes() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 197

subscribe_forex_quotes() (poly-
gon.streaming.streaming.StreamClient
method), 187

subscribe_option_minute_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 196

subscribe_option_minute_aggregates() (poly-
gon.streaming.streaming.StreamClient
method), 186

subscribe_option_quotes() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 196

subscribe_option_quotes() (poly-
gon.streaming.streaming.StreamClient
method), 186

subscribe_option_second_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 197

subscribe_option_second_aggregates() (poly-
gon.streaming.streaming.StreamClient
method), 187

subscribe_option_trades() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 195

subscribe_option_trades() (poly-
gon.streaming.streaming.StreamClient
method), 185

subscribe_stock_imbalances() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 195

subscribe_stock_imbalances() (poly-
gon.streaming.streaming.StreamClient

220 Index

polygon, Release 1.0.8

method), 185
subscribe_stock_limit_up_limit_down() (poly-

gon.streaming.async_streaming.AsyncStreamClient
method), 194

subscribe_stock_limit_up_limit_down()
(polygon.streaming.streaming.StreamClient
method), 185

subscribe_stock_minute_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 193

subscribe_stock_minute_aggregates() (poly-
gon.streaming.streaming.StreamClient
method), 184

subscribe_stock_quotes() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 193

subscribe_stock_quotes() (poly-
gon.streaming.streaming.StreamClient
method), 184

subscribe_stock_second_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 194

subscribe_stock_second_aggregates() (poly-
gon.streaming.streaming.StreamClient
method), 185

subscribe_stock_trades() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 193

subscribe_stock_trades() (poly-
gon.streaming.streaming.StreamClient
method), 184

SyncCryptoClient (class in poly-
gon.crypto.crypto_api), 171

SyncForexClient (class in polygon.forex.forex_api),
161

SyncOptionsClient (class in polygon.options.options),
129

SyncReferenceClient (class in poly-
gon.reference_apis.reference_api), 139

SyncStocksClient (class in polygon.stocks.stocks), 112

T
T (polygon.enums.StockReportType attribute), 202
TA (polygon.enums.StockReportType attribute), 202
TD_AMERITRADE (polygon.enums.OptionSymbolFormat

attribute), 207
TDA (polygon.enums.OptionSymbolFormat attribute), 207
THINK_OR_SWIM (polygon.enums.OptionSymbolFormat

attribute), 207
TICKER (polygon.enums.DividendSort attribute), 206
TICKER (polygon.enums.OptionsContractsSortType at-

tribute), 205
TICKER (polygon.enums.SplitsSortKey attribute), 205
TICKER (polygon.enums.TickerSortType attribute), 201

TickerMarketType (class in polygon.enums), 200
TickerNewsSort (class in polygon.enums), 202
TickerSortType (class in polygon.enums), 201
TickerType (class in polygon.enums), 200
TickerTypeAssetClass (class in polygon.enums), 202
Timespan (class in polygon.enums), 207
TIMESTAMP (polygon.enums.CryptoTradesSort attribute),

206
TIMESTAMP (polygon.enums.ForexQuotesSort attribute),

206
TIMESTAMP (polygon.enums.OptionQuotesSort attribute),

205
TIMESTAMP (polygon.enums.OptionTradesSort attribute),

205
TIMESTAMP (polygon.enums.StocksQuotesSort attribute),

205
TIMESTAMP (polygon.enums.StocksTradesSort attribute),

205
TOS (polygon.enums.OptionSymbolFormat attribute), 207
TRADE (polygon.enums.ConditionsDataType attribute),

203
TRADE_STATION (polygon.enums.OptionSymbolFormat

attribute), 207
TRADES (polygon.enums.ConditionMappingTickType at-

tribute), 203
TRADIER (polygon.enums.OptionSymbolFormat at-

tribute), 207
TRAILING_TWELVE_MONTHS (poly-

gon.enums.StockReportType attribute), 202
TRAILING_TWELVE_MONTHS_ANNUALIZED (poly-

gon.enums.StockReportType attribute), 202
TYPE (polygon.enums.ConditionsSortKey attribute), 203
TYPE (polygon.enums.TickerSortType attribute), 201

U
UNDERLYING_TICKER (poly-

gon.enums.OptionsContractsSortType at-
tribute), 205

UNIT (polygon.enums.TickerType attribute), 201
unsubscribe_crypto_level2_book() (poly-

gon.streaming.async_streaming.AsyncStreamClient
method), 200

unsubscribe_crypto_level2_book() (poly-
gon.streaming.streaming.StreamClient
method), 189

unsubscribe_crypto_minute_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 199

unsubscribe_crypto_minute_aggregates()
(polygon.streaming.streaming.StreamClient
method), 189

unsubscribe_crypto_quotes() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 199

Index 221

polygon, Release 1.0.8

unsubscribe_crypto_quotes() (poly-
gon.streaming.streaming.StreamClient
method), 188

unsubscribe_crypto_trades() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 198

unsubscribe_crypto_trades() (poly-
gon.streaming.streaming.StreamClient
method), 188

unsubscribe_forex_minute_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 198

unsubscribe_forex_minute_aggregates()
(polygon.streaming.streaming.StreamClient
method), 187

unsubscribe_forex_quotes() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 197

unsubscribe_forex_quotes() (poly-
gon.streaming.streaming.StreamClient
method), 187

unsubscribe_option_minute_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 196

unsubscribe_option_minute_aggregates()
(polygon.streaming.streaming.StreamClient
method), 186

unsubscribe_option_quotes() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 196

unsubscribe_option_quotes() (poly-
gon.streaming.streaming.StreamClient
method), 186

unsubscribe_option_second_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 197

unsubscribe_option_second_aggregates()
(polygon.streaming.streaming.StreamClient
method), 187

unsubscribe_option_trades() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 195

unsubscribe_option_trades() (poly-
gon.streaming.streaming.StreamClient
method), 186

unsubscribe_stock_imbalances() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 195

unsubscribe_stock_imbalances() (poly-
gon.streaming.streaming.StreamClient
method), 185

unsubscribe_stock_limit_up_limit_down()
(polygon.streaming.async_streaming.AsyncStreamClient
method), 195

unsubscribe_stock_limit_up_limit_down()
(polygon.streaming.streaming.StreamClient
method), 185

unsubscribe_stock_minute_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 194

unsubscribe_stock_minute_aggregates()
(polygon.streaming.streaming.StreamClient
method), 185

unsubscribe_stock_quotes() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 193

unsubscribe_stock_quotes() (poly-
gon.streaming.streaming.StreamClient
method), 184

unsubscribe_stock_second_aggregates() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 194

unsubscribe_stock_second_aggregates()
(polygon.streaming.streaming.StreamClient
method), 185

unsubscribe_stock_trades() (poly-
gon.streaming.async_streaming.AsyncStreamClient
method), 193

unsubscribe_stock_trades() (poly-
gon.streaming.streaming.StreamClient
method), 184

US (polygon.enums.Locale attribute), 204
UTP (polygon.enums.ConditionsSIP attribute), 203

W
WARRANT (polygon.enums.TickerType attribute), 201
WEEK (polygon.enums.Timespan attribute), 207

Y
Y (polygon.enums.StockReportType attribute), 202
YA (polygon.enums.StockReportType attribute), 202
YEAR (polygon.enums.StockReportType attribute), 202
YEAR (polygon.enums.Timespan attribute), 207
YEAR_ANNUALIZED (polygon.enums.StockReportType at-

tribute), 202

222 Index

	Getting Started
	What you need to have
	Installing polygon
	Optional Libraries

	General guide for clients & functions
	Creating and Using REST HTTP clients
	Request timeouts and limits configuration (optional)

	Calling the methods/functions
	Passing dates, datetime values or timestamps

	Return Values
	Pagination Support
	Get a Single Merged Response (recommended)
	Get a List of all pages
	Paginate Manually

	Better Aggregate Bars function
	How the Hell do I use it then
	I want to do it manually, but could use some help

	Async Support for REST endpoints
	UVLOOP integration
	Special Points

	Stocks
	Get Trades
	Get Trades v3
	Get Quotes
	Get Quotes v3
	Get Last Trade
	Get last Quote
	Get Daily Open Close
	Get Aggregate Bars (Candles)
	Get Grouped daily Bars (Candles)
	Get Previous Close
	Get Snapshot
	Get Snapshot (All)
	Get Current Price
	Get Gainers & Losers

	Options
	Working with Option Symbols
	Creating Option Symbols
	Parsing Option Symbols
	Converting Option Symbol Formats
	Detecting Option Symbol Format

	Get Trades
	Get Quotes
	Get Last Trade
	Get Daily Open Close
	Get Aggregate Bars
	Get Previous Close
	Get Snapshot

	Reference APIs
	Get Tickers
	Get Ticker Types
	Get Ticker Details
	Get Option Contract
	Get Option Contracts
	Get Ticker News
	Get Stock dividends
	Get Stock financials vX
	Get Stock Splits
	Get Market Holidays
	Get Market Status
	Get Conditions
	Get Exchanges

	Forex
	Get Historic forex ticks
	Get Quotes (NBBO)
	Get Last Quote
	Get Aggregate Bars (Candles)
	Get Grouped Daily Bars (Candles)
	Get Previous Close
	Get Gainers & Losers
	Real Time currency conversion

	Crypto
	Get Historic Trades
	Get Trades
	Get Last Trade
	Get Daily Open Close
	Get Aggregate Bars (Candles)
	Get Grouped Daily Bars (Candles)
	Get Previous Close
	Get Snapshot All
	Get Snapshot
	Get Gainers and Losers
	Get Level 2 Book

	Callback Streaming
	Creating the client
	Starting the Stream
	Important Concepts
	Subscribing/Unsubscribing to Streams
	Handling messages
	Closing Stream

	Stocks Streams
	Stock Trades
	Stock Quotes
	Stock Minute Aggregates (OCHLV)
	Stock Second Aggregates (OCHLV)
	Stock Limit Up Limit Down (LULD)
	Stock Imbalances

	Options Streams
	Options Trades
	Options Quotes
	Options Minute Aggregates (OCHLV)
	Options Second Aggregates (OCHLV)

	Forex Streams
	Forex Quotes
	Forex Minute Aggregates (OCHLV)

	Crypto Streams
	Crypto Trades
	Crypto Quotes
	Crypto Minute Aggregates (OCHLV)
	Crypto Level 2 Book

	Async Streaming
	Creating the client
	Starting the Stream
	Without using the built-in reconnect functionality
	Using the built-in reconnect functionality

	Subscribing/Unsubscribing to Streams
	Handling Messages
	Changing message handler functions while stream is running
	Closing the Stream
	Stock Streams
	Stock Trades
	Stock Quotes
	Stock Minute Aggregates (OCHLV)
	Stock Second Aggregates (OCHLV)
	Stock Limit Up Limit Down (LULD)
	Stock Imbalances

	Options Streams
	Options Trades
	Options Quotes
	Options Minute Aggregates (OCHLV)
	Options Second Aggregates (OCHLV)

	Forex Streams
	Forex Quotes
	Forex Minute Aggregates (OCHLV)

	Crypto Streams
	Crypto Trades
	Crypto Quotes
	Crypto Minute Aggregates (OCHLV)
	Crypto Level 2 Book

	What the Hell are Enums Anyways
	What are they
	Then why not just pass in raw values? Why do we need enums?
	Okay how do I use them
	Approach 1 - importing all enums at once
	Approach 2 - importing just the enums you need
	Other Approaches

	Getting Help
	Bugs, Discussions, Wikis, FAQs
	Bug Reports or Feature Requests
	Discussions
	Community Wikis
	FAQs

	Contributing and License
	Contributing to the library
	Picking up what to work on
	Setting Up the Development Environment
	Testing your changes

	License

	Library Interface Documentation
	Base Clients
	Base Client
	Base Sync Client
	Base Async Client

	Stocks Clients
	Stocks Sync Client
	Stocks Async Client

	Options Clients
	Option Symbol Helper Functions & Objects
	Options Sync Client
	Options Async Client

	References Clients
	Reference Sync Client
	Reference Async Client

	Forex Clients
	Forex Sync Client
	Forex Async Client

	Crypto Clients
	Crypto Sync Client
	Crypto Async Client

	Callback Streamer Client (Sync)
	Async Streamer Client
	Enums Interface

	Indices and tables
	Python Module Index
	Index

